Crab Cavity Plans in the SPS

Alick Macpherson LHC Operations Group & RF Group CERN

RFTech Workshop - 25th March 2013

<u>Acknowledgments</u> Philippe Baudrenghien, Krzysztof Brodzinski, Rama Calaga, Ofelia Capatina, Frederic Galleazzi, Erk Jensen, Eric Montesinos, Vittorio Parma, Rogelio Tomas, Giovanna Vandoni

Crab cavities - Why we want them in the LHC

 Crab Cavities: Transverse deflecting cavities that rotate bunches to optimize the geometrical reduction factor in luminosity for colliding beams with a nonzero crossing angle.

Motivation for HL-LHC

- Can optimize luminosity production
 - Gives a factor ~2 in Luminosity reach
- Can be used for luminosity leveling
- Can moderate longitudinal vertex density

LHC Prerequisites

- Show that crab cavities can work effectively in LHC environment
- Ensure machine protection aspects are compatible with LHC operation

Demonstration of feasibility with proton machines: SPS validation is essential

Crab Cavities in the SPS:

SPS Validation program - Objectives

- Validate Crab cavity design for proton beams
- Validate operational functionality & Machine protection mechanisms
- Overall goal => set inputs for final design
- SPS tests considered essential to finalize design + operational scenarios
 - SPS crab cavity tests not foreseen before 2016
- Crab cavity prototypes:
 - Compact superconducting transverse deflecting cavities
 - complicated geometry, compact, made from solid Niobium
- Operational Constraint: Cavities must not block normal SPS operation
 - Must be possible to remove from beam line on short time scale.

SPS Crab Cavity Validation Program

- Stand alone validation
 - Full characterization of cryomodule & cavities prior to installation in SPS
- Invisibility Tests
 - Crab Cavities must be transparent to operation when detuned
- Beam loaded measurements
 - Cavity performance with beam: cavity response, heat loads, RF noise etc
- Validation of cavity operational cycle with beam
 - LLRF permits cycling multiple cavities through operational states
- Crabbing functionality:
 - Validation of crabbing, performance analysis vs beam parameters
- Machine Protection Aspects
 - Detection of failure modes and mitigations/interlocks associated with LLRF

Crab Cavity layout

LHC

• LHC: Local crabbing scheme: 3 cavities per beam on each side of the IP

Crab Cavity layout

LHC

• LHC: Local crabbing scheme: 3 cavities per beam on each side of the IP

- SPS: Possible to test of both local or global crabbing schemes
- 2 identical cavities per cryomodule, 1 RF amplifier per cavity
- Cavities can only stay in beam line if superconducting state maintained
- SPS tests: Only horizontal crabbing (LHC: crabbing in both H & V)

SPS crab cavity location

SPS Location: LSS4

- Cryogenics Infrastructure
 - Only SPS Pt 4 is feasible
- LLRF can be close (35m)
 - Experimental cavern (ECX4)
- Facility for switching cavities in/out
- Crab Cavity space not free till 2015
- Limited access to SPS zone after SPS long shutdown (2013-2014)
- SPS Extraction pt for LHC beam 2

SPS LSS4 Layout

SPS Integration - Space available

Integration Issues

- Transport Lane respected
- Support table: size ~5x3m
 - Transverse motion = 510 mm
- Constrained cryomodule volume
- RF amplifiers mounted on support table
 - Rigid connections between RF amplifiers and cryomodule
- Rigid cryo lines onto cryomodule to minimize heat load

Based on 3D model built from Dec 2012 scans of as-installed geometry

Integration in the SPS -operational aspects

SPS operation must be independent of crab cavity operational availability

Crab Cavity module switchable from in-beam to out-of-beam position

=> Mechanical Y-Chamber mounted on support table

• Y-chamber movement: reproducible 0.5 m transverse movement in < 1hr

- Must be remote controlled (ie no access required) and take
 - Safety incorporated into support structure design
 - Mechanical movement of helium vessels, cryo-lines etc

SPS Operational Constraints

- SPS Extraction bump prohibits CC in beam when filling LHC
- CCs in beam: Blocks LHC filling. Aperture bottleneck for normal SPS operation
 - => Y-Chamber needed so cavities can be bypassed when not under test

SPS Cryogenic Issues

- Cryo infrastructure for 2K operation
 - Existing 4.5K cryo station, but concerns over liquefaction capacity

Predicted Liquefaction capacity line [g/s]		0.85	1.2
Static heat load -> 0.55-0.65 g/s			

SPS Cryogenic Issues

- Cryo infrastructure for 2K operation
 - Existing 4.5K cryo station, but concerns over liquefaction capacity

- Helium Liquefaction capacity measurement mandatory
- Static and dynamic heat loads to be reviewed (cavities + infrastructure)

Equipment	Heat load @ 2K	Source of capacity
cryostat -static	~ 7W @ 2K	TCF20 -> 0.35 g/s
cryostat -dynamic	~ 5-10 W @2K	TCF20/Buffer tank
Service module	~1-2 W @ 2K	TCF20 -> 0.1 g/s
Buffer tank	~1-2 W @ 4.5 K	TCF20 -> 0.1 g/s
Transfer lines	~2 W @ 4.5 K	TCF20 -> 0.1 g/s

SPS Cryogenic Issues

- Cryo infrastructure for 2K operation
 - Existing 4.5K cryo station, but concerns over liquefaction capacity

- Helium Liquefaction capacity measurement mandatory
- Static and dynamic heat loads to be reviewed (cavities + infrastructure)

Equipment	Heat load @ 2K	Source of capacity
cryostat -static	~ 7W @ 2K	TCF20 -> 0.35 g/s
cryostat -dynamic	~ 5-10 W @2K	TCF20/Buffer tank
Service module	~1-2 W @ 2K	TCF20 -> 0.1 g/s
Buffer tank	~1-2 W @ 4.5 K	TCF20 -> 0.1 g/s
Transfer lines	~2 W @ 4.5 K	TCF20 -> 0.1 g/s

Install 200 litre LHe buffer tank: ensures > 8 hrs MD operation with beam @ 2K

Crab Cavity Cryogenics in the SPS

Cryogenics Layout

Cryogenics - infrastructure for real

SPS BA4 4.5 K cryogenics last used 8 years ago (COLDEX). Refurbishment + upgrade for 2 K – is underway

Renovated compressor + elec. motor

Revised, labeled and qualified pressure control system / oil removal system

New power supply panel for compressor station

2 K pumping groups recovered from AMS

TCF20 Cold box

Compact Crab Cavities - 3 Candidates

Kick Voltage = 3.3 MV	Operating Frequency	y = 400.790 MHz
Operating temperature: 2K	Residual Resis	stance $R_s \le 10n\Omega$
Quality factors:	$Q_0 \le 10^{10}$	$10^5 \le Q_{EXT} \le 10^6$

Compact Crab Cavities - 3 Candidates

		Kick Voltage = 3.3 MV	Operating Frequency = 400.790 MHz			
Operating temperature: 2K		Operating temperature: 2	K Res	Residual Resistance $R_s \le 10n\Omega$		
	Quality factors:		$Q_0 \le 10^{10}$	$10^5 \le Q_{EXT} \le 10^6$		
		194 mm LHC B1 B2				
			Double Ridge	UK-4Rod	1/4 Wave	
	cal	Cavity Radius [mm]	147.5	143/118	142/122	
	ometri	Cavity length [mm]	597	500	380	
	Ge	Beam Pipe [mm]	84	84	84	
		Peak E-Field [MV/m]	33	32	47	
		Peak B-Field [mT]	56	60.5	71	
	RF	R _T /Q [W]	287	915	318	
		Nearest Mode [MHz]	584	371-378	575	

Compact Crab Cavities - 3 Candidates

HOM frequency [GHz]	Mode Config.	R/Q [Ohm]
0.579	Longitudinal	108
0.671	Horizontal	70.5
0.700	Hybrid (y, z)	0.24/0.25
0.752	Deflection	34.9
0.800	Horizontal	6.02e-4
0.917	Horizontal	30.9
0.949	Longitudinal	28.1
1.080	Deflection	1.54
1.102	Horizontal	1.84e-3
1.114	Deflection	1.06
1.202	Horizontal	5.07e-2
1.247	Hybrid (y, z)	8.0e-2/6.0e-2
1.291	Deflection	10.0

Double Ridge

Operates in a TE-like mode

Cavity prototypes - not just on paper

SM18 tests in Nov 2012 on UK-4Rod Cavity Initial measurements with compromised vacuum of 10⁻⁵ mbar

Cavity prototypes - not just on paper

Cavity Tuners

Up/down motion $\pm 2\mu m \rightarrow 1 \text{ kHz}$

Push/pull on cavity body

Scissor jack type mechanism

Detuning range: LHC= ± 5.5 kHz (half f_{rev}). Lorentz Detuning ~O(1MHz)

Cavity Tuners - Implementation

Up/down motion $\pm 2\mu m \rightarrow 1 \text{ kHz}$ Push/pull on cavity body

Scissor jack type mechanism

=> Each cavity prototype requires its own cryomodule design

Cryomodule Design

SPS tests: 2 identical cavities in 1 cryomodule

- Cryo modules for SPS not final LHC design
- Cryogenic and power coupler ports to be top mounted
- SPS integration imposes design restrictions

Cryomodule Design

SPS tests: 2 identical cavities in 1 cryomodule

- Cryo modules for SPS not final LHC design
- Cryogenic and power coupler ports to be top mounted
- SPS integration imposes design restrictions

1000mm

Cryomodule Design

SPS tests: 2 identical cavities in 1 cryomodule

1000mm

- Cryo modules for SPS not final LHC design
- Cryogenic and power coupler ports to be top mounted
- SPS integration imposes design restrictions

LHC Alignment tolerances :

- Cavity tilt: Transverse -> 50 mrad (0.3°)
- Cavity tilt: Longitudinal -> 1mrad
- Transverse inter-cavity alignment: 0.7mm

2160mm

~3000mm

Fundamental Power coupler

- Fundamental power coupler: Design nearing completion
 - 2 Cavity type with E-field coupling, 1 with B-field coupling
- Power coupler fabrication and testing take time
 - Not expected before Q2 of 2015

Fundamental Power coupler

- Fundamental power coupler: Design nearing completion
 - 2 Cavity type with E-field coupling, 1 with B-field coupling
- Power coupler fabrication and testing take time
 - Not expected before Q2 of 2015

Interface to cryo module still being resolved

Assembly constraint: connection from top =>Cavity must be able to support coupler weight (with WG) [~35 kg]

RF Power

- RF amplifier: One 400 MHz 50 kW SPS Tetrode per cavity
- TX power vs. Q_{EXT}

RF Power

- RF amplifier: One 400 MHz 50 kW SPS Tetrode per cavity
- TX power vs. Q_{EXT}

Machine protection If $Q_{EXT} = 10^6 => \tau_{Voltage} \sim 800 \mu s$ while $T_{Beam dump} = \sim 3$ LHC turns $\sim 270 \mu s$ => Most failure modes slow (due to Q_L) => OK for LHC beam dump system => For fast failure, look to nested feed back loops to mitigate failure

Multiple Cavity Control and MP algorithms: LLRF

- Cavity Controller: Strong feedback to regulate individual cavities
 - Feedback loop delay < 1µs
- Global Feedback: regulates crabbing-uncrabbing & MPS mitigations
 - Feedback loop delay ~5 μ s << 1 LHC turn

LHC Control loops and MPS algorithms to be developed and tested in SPS

Schedule up to Installation in the SPS

- Power coupler design completed: Q1 of 2013
- SM18 Vertical tests of prototype cavities: start Q2 of 2013
- Cryostat design ready: End of 2013
- Cryogenic infrastructure installed in SPS LSS4 : End of SPS LS1
- Cabling infrastructure in SPS: Q1 of 2014
- Power Couplers available for cryostat: Q1 of 2015
- Cryomodule fully dressed: Q2 of 2015
- SM18 Cryomodule fully tested: Q3 of 2015
- Cryomodule installed in SPS in December: 2015-2016 Christmas stop.
- Crab Cavity validation MDs: SPS Run 2016

SPS Crab Cavity Run Issues ...

- Assembly: Long leadtime on materials/design. Power coupler & cryomodule
- RF Power Amplifers (SPS Tetrodes) & cabling (BA4->ECX4->LSS4):
 - Refurbishment of existing amplifiers and cables. Managed within RF group
- Cryogenics
 - Liquefaction capacity and heat loads need to be benchmarked (June 2013)
 - Reliability TCF20 needs to be assessed
- Safety:
 - Understand constraints to move cryomodule in/out of beam line
- Instrumentation:
 - Mostly use existing SPS instrumentation: Need to confirm any LS1 requests
- Machine Protection:
 - Ensure simulations and LLRF mitigation algorithms match MPS requirements

Summary

- Cavities:
 - Compact cavity designs: 3 mature designs. Prototypes build &being tested
 - Focusing now on design of cryomodule, power coupler and infrastructure
- SPS validation of crab cavities seen as essential
 - SPS tests scheduled for 2016 (& possibly 2017)
 - Schedule: Overall schedule is extremely tight ...
 - Earliest feasible installation date: Installation in 2015 Christmas stop
 - Need to assess Cryomodule delivery date and post-LS1 SPS schedule ...
 - SPS location (LSS4) has some concerns (aperture, cryo capacity, Y-chamber)
- Selection of final cavity design: based on SM18 + SPS performance
 - Foresee exchange of cavity types in SPS=> understand SPS+LHC schedule
 - Can a cryo module be exchanged in an SPS technical stop (5 days)?

Essential milestones

Crabbing functionality, invisibility of detuned cavity, Machine protection algos