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Crab cavities - Why we want them in the LHC

- Crab Cavities: Transverse deflecting cavities that rotate bunches to optimize
the geometrical reduction factor in luminosity for colliding beams with a non-
Zero crossing angle.

Motivation for HL-LHC —--
- Can optimize luminosity production CrabCavty
- Gives a factor ~2 in Luminosity reach
- Can be used for luminosity leveling Crab Caviy Crab Cavi

- Can moderate longitudinal vertex density —J.r

LHC Prerequisites
- Show that crab cavities can work effectively in LHC environment

- Ensure machine protection aspects are compatible with LHC operation

Demonstration of feasibility with proton machines: SPS validation is essential



Crab Cavities In the SPS:

- SPS Validation program - Objectives
- Validate Crab cavity design for proton beams
- Validate operational functionality & Machine protection mechanisms

- Overall goal => set inputs for final design

- SPS tests considered essential to finalize design + operational scenarios

- SPS crab cavity tests not foreseen before 2016

- Crab cavity prototypes:
- Compact superconducting transverse deflecting cavities

- complicated geometry, compact, made from solid Niobium

- Operational Constraint: Cavities must not block normal SPS operation

« Must be possible to remove from beam line on short time scale.



SPS Crab Cavity Validation Program

« Stand alone validation

* Full characterization of cryomodule & cavities prior to installation in SPS

* Invisibility Tests
- Crab Cavities must be transparent to operation when detuned

- Beam loaded measurements
- Cavity performance with beam: cavity response, heat loads, RF noise etc

- Validation of cavity operational cycle with beam
- LLRF permits cycling multiple cavities through operational states

- Crabbing functionality:
- Validation of crabbing, performance analysis vs beam parameters

- Machine Protection Aspects
 Detection of failure modes and mitigations/interlocks associated with LLRF



Crab Cavity layout
LHC
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« LHC: Local crabbing scheme: 3 cavities per beam on each side of the IP



Crab Cavity layout
LHC
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« LHC: Local crabbing scheme: 3 cavities per beam on each side of the IP

SPS : 10m

Beam ﬁ
>

- SPS: Possible to test of both local or global crabbing schemes

» 2 identical cavities per cryomodule, 1 RF amplifier per cavity
- Cavities can only stay in beam line if superconducting state maintained
- SPS tests: Only horizontal crabbing (LHC: crabbing in both H & V)



SPS crab cavity location
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SPS Location: LSS4
Cryogenics Infrastructure
- Only SPS Pt 4 is feasible
LLRF can be close (35m)

- Experimental cavern (ECX4)

Facility for switching cavities in/out

Crab Cavity space not free till 2015

Limited access to SPS zone after
SPS long shutdown (2013-2014)

- SPS Extraction pt for LHC beam 2




SPS LS5S4 Layout
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SPS Integration - Space available

Integration Issues

Transport Lane respected

Support table: size ~5x3m

 Transverse motion = 510 mm

Constrained cryomodule volume
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support table

* Rigid connections between
RF amplifiers and cryomodule

» Rigid cryo lines onto cryomodule
A to minimize heat load
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Integration in the SPS -operational aspects

SPS operation must be independent of crab cavity operational availability

- Crab Cavity module switchable from in-beam to out-of-beam position

=> Mechanical Y-Chamber mounted on support table
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« Y-chamber movement: reproducible 0.5 m transverse movement in < 1hr

- Must be remote controlled (ie no access required) and take
- Safety incorporated into support structure design

« Mechanical movement of helium vessels, cryo-lines etc



SPS Operational Constraints

- SPS Extraction bump prohibits CC in beam when filling LHC
« CCs in beam: Blocks LHC filling. Aperture bottleneck for normal SPS operation

=> Y-Chamber needed so cavities can be bypassed when not under test

SPS LSS4: LHC Extraction bump (Q20 optics)

—
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SPS Cryogenic Issues

- Cryo infrastructure for 2K operation

» Existing 4.5K cryo station, but concerns over liquefaction capacity

Predicted Liquefaction capacity line [g/s] 0.7 0.85 1.2

Static heat load -> 0.55-0.65 g/s
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SPS Cryogenic Issues

- Cryo infrastructure for 2K operation

» Existing 4.5K cryo station, but concerns over liquefaction capacity

Predicted Liquefaction capacity line [g/s] 0.7 0.85 1.2

Static heat load -> 0.55-0.65 g/s
- Helium Liquefaction capacity measurement mandatory

- Static and dynamic heat loads to be reviewed (cavities + infrastructure)

Equipment Heat load @ 2K Source of capacity
cryostat -static ~7TW @ 2K TCF20 -> 0.35 g/s
cryostat -dynamic ~5-10 W @2K TCF20/Buffer tank
Service module ~1-2 W @ 2K TCF20 -> 0.1 g/s
Buffer tank ~1-2W@4.5K TCF20 -> 0.1 g/s
Transfer lines ~2W@4.5K TCF20 -> 0.1 g/s
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SPS Cryogenic Issues

- Cryo infrastructure for 2K operation

» Existing 4.5K cryo station, but concerns over liquefaction capacity

Predicted Liquefaction capacity line [g/s] 0.7 0.85 1.2

Static heat load -> 0.55-0.65 g/s
- Helium Liquefaction capacity measurement mandatory

- Static and dynamic heat loads to be reviewed (cavities + infrastructure)

Equipment Heat load @ 2K Source of capacity
cryostat -static ~7TW @ 2K TCF20 -> 0.35 g/s
cryostat -dynamic ~5-10 W @2K TCF20/Buffer tank
Service module ~1-2 W @ 2K TCF20 -> 0.1 g/s
Buffer tank ~1-2W@4.5K TCF20 -> 0.1 g/s
Transfer lines ~2W@4.5K TCF20 -> 0.1 g/s

Install 200 litre LHe buffer tank: ensures > 8 hrs MD operation with beam @ 2K
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Crab Cavity Cryogenics in the SPS
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Cryogenics Layout
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Cryogenics - infrastructure for real

SPS BA4 4.5 K cryogenics last used 8 years ago (COLDEX). Refurbishment + upgrade for 2 K - is underway

ol ¥

New power supply panel for compressor station

TCF20 Cold box
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Compact Crab Cauvities - 3 Candidates

Kick Voltage = 3.3 MV Operating Frequency = 400.790 MHz

Operating temperature: 2K Residual Resistance Rs = 10nQ2
Quality factors: Qo <1010 10° < Qexr <106
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Compact Crab Cauvities - 3 Candidates

Kick Voltage = 3.3 MV Operating Frequency = 400.790 MHz

Operating temperature: 2K Residual Resistance Rs = 10n()
Quality factors: Qo <1010 10° < Qexr <106
194 mm
LHC ........................... 2
Double Ridge UK-4Rod 4 Wave
5 Cavity Radius [mm] 147.5 143/118 142/122
g Cavity length [mm] 597 500 380
& Beam Pipe [mm] 84 84 84
Peak E-Field [MV/m] 33 32 47
Peak B-Field [mT] 56 60.5 /1
 R/Q W] 287 915 318
Nearest Mode [MHZ] 584 575
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Compact Crab Cauvities - 3 Candidates
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Cavity prototypes - not just on paper

Cavity Q vs.

Overcoupled,~4

*
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Note: Q, including flanges to be confirmed

2 2.5

SM18 tests in Nov 2012 on UK-4Rod Cavity

Initial measurements with compromised vacuum of 10 mbar
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Cavity prototypes - not just on paper

Cavity Q vs. V
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SM18 tests in Nov 2012 on UK-4Rod Cavity
Initial measurements with compromised vacuum of 10 mbar
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Cavity Tuners

Up/down motion Push/pull on Scissor jack type
+ 2um — 1 kHz cavity body mechanism

I///////// A (/7 e (/L
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Double lever Modified screw/nut CEBAF Tuner
(Saclay type) (SOLEIL type)
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Cavity Tuners - Implementation

Up/down motion Push/pull on Scissor jack type
+ 2um — 1 kHz cavity body mechanism




Cryomodule Design

SPS tests: 2 identical cavities in 1 cryomodule
- Cryo modules for SPS not final LHC design
« Cryogenic and power coupler ports to be top mounted
- SPS integration imposes design restrictions
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Cryomodule Design

SPS tests: 2 identical cavities in 1 cryomodule

- Cryo modules for SPS not final LHC design

« Cryogenic and power coupler ports to be top mounted

- SPS integration imposes design restrictions
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Cryomodule Design

SPS tests: 2 identical cavities in 1 cryomodule
- Cryo modules for SPS not final LHC design

« Cryogenic and power coupler ports to be top mounted

- SPS integration imposes design restrictions
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- LHC Alignment tolerances :
» Cavity tilt: Transverse -> 50 mrad (0.3")
- Cavity tilt: Longitudinal -> 1mrad
 Transverse inter-cavity alignment: 0.7mm ~3000mm o
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Fundamental Power coupler

- Fundamental power coupler: Design nearing completion
- 2 Cavity type with E-field coupling, 1 with B-field coupling
- Power coupler fabrication and testing take time
- Not expected before Q2 of 2015

reference probe position
orresponding to "0" in
the plot

62.3mm
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Fundamental Power coupler

- Fundamental power coupler: Design nearing completion
- 2 Cavity type with E-field coupling, 1 with B-field coupling
- Power coupler fabrication and testing take time
- Not expected before Q2 of 2015

Interface to cryo module
still being resolved

Cryomodule ]
Assembly constraint:

Bellow between connection from top

coupler and

cryomudule =>Cavity must be able -\
to support coupler weight ' reterence probe positon

orresponding to "0" in

(with WG) [ ~35 kg]

62.3mm

Cavity and its
helium vessel
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RF Power

- RF amplifier: One 400 MHz - 50 kW SPS Tetrode per cavity

« TX power vs. Qexr

»»»»»
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V,<Q,I, 5(6 x)  (R/Q=300Q, I=1.1A)

Blue trace => 1 mm offset
Red Trace => 0 mm offset

For better stability

Imm offset

- — p—

Operational QL

No offset

1 mm offset: power is “flat”
at ~Qexr in 25 kW range for

Qext in [ 4x10°, 1.5 x10°]

AAAAAA
......
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Inter Cavity Alignment
1mm tolerance is OK for
power converter in a
reasonable Qextrange
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RF Power

- RF amplifier: One 400 MHz - 50 kW SPS Tetrode per cavity

« TX power vs. Qexr

V< QLIb%(E) x)  (R/Q=300Q, I=1.1A)

»»»»»

Blue trace => 1 mm offset

Red Trace => 0 mm offset

For better stability

| 1mm offs_(f.’g‘,_-.

Operational QL

No offset

1 mm offset: power is “flat”
at ~Qexr in 25 kW range for

Qext in [ 4x10°, 1.5 x10°]

»»»»»»
......
vvvvvv

Inter Cavity Alignment
1mm tolerance is OK for
power converter in a
reasonable Qextrange

Machine protection
If Qext = 10° => Tvoltage ~800us while Teeam dump = ~ 3 LHC turns ~ 270ps
=> Most failure modes slow (due to Qr) => OK for LHC beam dump system
=> For fast failure, look to nested feed back loops to mitigate failure
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Multiple Cavity Control and MP algorithms: LLRF

LHC
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Multi Cavity Feedback
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- Cavity Controller: Strong feedback to regulate individual cavities

» Feedback loop delay < 1pus
- Global Feedback: regulates crabbing-uncrabbing & MPS mitigations

« Feedback loop delay ~5 ps << 1 LHC turn

LHC Control loops and MPS algorithms to be developed and tested in SPS
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Schedule - Longer term view

] F M A M ] ] A S 0 N D
2011 1 2 3 4 5 6 7 8 ] IONS
2012 1 2 3 4 5 6 7 8 9
2013 IONS IONS —
A
2014
2015 | RrecoM RECOM | RAMP-UP 1 2| SCRUB 25 ns 3 4 5 d IONS
SPS validation
run 2016 RAMP-UP 1 2 3 4 5 6 7 ¢ IONS
2016 & 20177 2017 RAMP-UP 1 2 3 4 5 6 7 6] IONS
2018
2019 | Rrecom RECOM | RAMP-UP 1 2 3 4 5 6 7 RS
2020 RAMP-UP 1 2 3 4 5 6 7 e IONS
2021 RAMP-UP 1 2 3 4 5 6 7 g IONS
2022

Technical stop or shutdown
Proton physics
Ion Physics

Recommissioning
Intensity ramp-up
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Schedule up to Installation in the SPS

~ Now 2013 2014 2015 2016

Crab Cavity
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Cryo
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Installation

- Power coupler design completed: Q1 of 2013

- SM18 - Vertical tests of prototype cavities: start Q2 of 2013

- Cryostat design ready: End of 2013

+ Cryogenic infrastructure installed in SPS LSS4 : End of SPS LS1
 Cabling infrastructure in SPS: Q1 of 2014

- Power Couplers available for cryostat: Q1 of 2015

- Cryomodule fully dressed: Q2 of 2015

« SM18 - Cryomodule fully tested: Q3 of 2015

« Cryomodule installed in SPS in December: 2015-2016 Christmas stop.
- Crab Cavity validation MDs: SPS Run 2016
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SPS Crab Cavity Run Issues ...

- Assembly: Long leadtime on materials/design. Power coupler & cryomodule

- RF Power Amplifers (SPS Tetrodes) & cabling (BA4->ECX4->LSS4):
* Refurbishment of existing amplifiers and cables. Managed within RF group

- Cryogenics
- Liquefaction capacity and heat loads need to be benchmarked (June 2013)

- Reliability TCF20 needs to be assessed

- Safety:
- Understand constraints to move cryomodule in/out of beam line

* Instrumentation:
« Mostly use existing SPS instrumentation: Need to confirm any LS1 requests

- Machine Protection:
* Ensure simulations and LLRF mitigation algorithms match MPS requirements



Summary

 Cauvities:
- Compact cavity designs: 3 mature designs. Prototypes build &being tested
- Focusing now on design of cryomodule, power coupler and infrastructure

- SPS validation of crab cavities seen as essential
- SPS tests scheduled for 2016 (& possibly 2017)
* Schedule: Overall schedule is extremely tight ...
- Earliest feasible installation date: Installation in 2015 Christmas stop
* Need to assess Cryomodule delivery date and post-LS1 SPS schedule ...
« SPS location (LSS4) has some concerns ( aperture, cryo capacity, Y-chamber)

 Selection of final cavity design: based on SM18 + SPS performance
« Foresee exchange of cavity types in SPS=> understand SPS+LHC schedule
- Can a cryo module be exchanged in an SPS technical stop (5 days)?

 Essential milestones

- Crabbing functionality, invisibility of detuned cavity, Machine protection algos
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