Introduction	RF Multipole Theory	Latest Cavity Analysis	Measurements	Conclusions	Acknowledgements

Radiofrequency Multipoles in LHC Crab Cavities

María Navarro-Tapia Alexej Grudiev Rama Calaga

Radiofrequency Group, Beams Department CERN, Geneva (Switzerland)

Fourth RFTech Workshop

Crab Cavities. Contextual Framework

Compact CC Designs

Non-traditional shapes, far from the classic elliptical ones

イロト イポト イヨト イヨト

 Introduction
 RF Multipole Theory
 Latest Cavity Analysis
 Measurements
 Conclusions
 Acknowledgements

 LHC Crab Cavities under Consideration
 Acknowledgements
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Courtesy of Z. Li, J. Delayen *et al.* ODU/SLAC

I. Ben-Zvi *et al.* BNL G. Bull, B. Hall UK

A B > A B >

Non-axial symmetry components of the main deflecting mode RF-kicks influencing the beam dynamics

Introduction **RF** Multipole Theory Latest Cavity Analysis Measurements Conclusions Acknowledgements 0000 LHC Crab Cavities under Consideration **RF** dipole ¹/₄-wave 4-rod Courtesy of G. Bull, B. Hall Z. Li, J. Delayen et al. I Ben-Zvi et al UK ODU/SLAC BNL

Non-axial symmetry Higher order multipolar components of the main deflecting mode

RF-kicks influencing the beam dynamics

< 3 > < 3 >

 Introduction
 RF Multipole Theory
 Latest Cavity Analysis
 Measurements
 Conclusions
 Acknowledgements

 LHC Crab Cavities under Consideration
 Image: Conclusion of the open series of the o

Courtesy of Z. Li, J. Delayen *et al.* ODU/SLAC

I. Ben-Zvi *et al.* BNL G. Bull, B. Hall UK

Sfrag replacements Non-axial symmetry

Higher order multipolar components of the main deflecting mode

RF-kicks influencing the beam dynamics

< 3 > < 3 >

 Introduction
 RF Multipole Theory
 Latest Cavity Analysis
 Measurements
 Conclusions
 Acknowledgements

 LHC Crab Cavities under Consideration
 RF dipole
 1-waye
 4 rod

4-rod

Courtesy of Z. Li, J. Delayen *et al.* ODU/SLAC

I. Ben-Zvi *et al.* BNL G. Bull, B. Hall UK

Non-axial symmetry Higher order multipolar components of the main deflecting mode

RF-kicks influencing the beam dynamics

< 3 > < 3 >

 Introduction
 RF Multipole Theory
 Latest Cavity Analysis
 Measurements
 Conclusions

 OO●O
 000000
 000000
 000000
 0
 0
 0

Acknowledgements

Motivation and Objectives

Aim of this work

- Study of the multipolar error on the updated cavities.
 - Assess the strengths of the higher-order terms.
 - Propose some mitigation techniques, once known the tolerance from the beam-dynamic study.
- Experimental verification of the RF multipolar components for the crab cavities under study, by means of bead-pull measurements.

 Introduction
 RF Multipole Theory
 Latest Cavity Analysis
 Measurements
 Conclusions

 00●0
 00000
 00000
 000000
 0
 0
 0

Acknowledgements

Motivation and Objectives

Aim of this work

- Study of the multipolar error on the updated cavities.
 - Assess the strengths of the higher-order terms.
 - Propose some mitigation techniques, once known the tolerance from the beam-dynamic study.
- Experimental verification of the RF multipolar components for the crab cavities under study, by means of bead-pull measurements.

Introduction 000●	RF Multipole Theory	Latest Cavity Analysis	Measurements	Conclusions ○	Acknowledgements O
^l Outline					

- 2 RF Multipole Theory
- 3 Latest Cavity Analysis
- Measurement Setup
- 5 Summary and Conclusions
- 6 Acknowledgements

Introduction	RF Multipole Theory	Latest Cavity Analysis	Measurements	Conclusions ○	Acknowledgements O
Outline					

Introduction

- 2 RF Multipole Theory
- 3 Latest Cavity Analysis
 - 4 Measurement Setup
- 5 Summary and Conclusions
- 6 Acknowledgements

RF Multipole Concept

similar to

Static Multipole treatment in the Magnet Community

Fields in the aperture of accelerator magnets

- Fourier coefficients,
- field harmonics, or
- multipole coefficients.

글 > - < 글 >

RF Multipole Concept

Static Multipole treatment in the Magnet Community

Fields in the aperture of accelerator magnets

described by • Fourier coefficients,

- field harmonics, or
- multipole coefficients.

Fourier expansion of the radial field components:

$$B_r(r_0,\phi) = \sum_{n=1}^{\infty} [B_n(r_0)\sin n\phi + A_n(r_0)\cos n\phi]$$
$$B_{\phi}(r_0,\phi) = \sum_{n=1}^{\infty} [B_n(r_0)\sin n\phi - A_n(r_0)\cos n\phi]$$

$$A_n(r_0) = \frac{1}{\pi} \int_0^{2\pi} B_r(r_0, \phi) \cos n\phi \approx \frac{2}{N} \sum_{k=0}^{N-1} B_r(r_0, \phi_k) \cos n\phi_k$$

$$\phi_k = \frac{2\pi k}{N}$$

$$B_n(r_0) = \frac{1}{\pi} \int_0^{2\pi} B_r(r_0, \phi) \sin n\phi \approx \frac{2}{N} \sum_{k=0}^{N-1} B_r(r_0, \phi) \sin n\phi_k$$

- ₹ 🖬 🕨

Introduction	RF Multipole Theory ○●○○○○	Latest Cavity Analysis	Measurements	Conclusions ○	Acknowledgements O
Magnet	ic Multipoles	5			

Fourier expansion of the radial field components:

$$B_r(r_0,\phi) = \sum_{n=1}^{\infty} [B_n(r_0)\sin n\phi + A_n(r_0)\cos n\phi]$$
$$B_{\phi}(r_0,\phi) = \sum_{n=1}^{\infty} [B_n(r_0)\sin n\phi - A_n(r_0)\cos n\phi]$$

$$A_{n}(r_{0}) = \frac{1}{\pi} \int_{0}^{2\pi} B_{r}(r_{0}, \phi) \cos n\phi \approx \frac{2}{N} \sum_{k=0}^{N-1} B_{r}(r_{0}, \phi_{k}) \cos n\phi_{k}$$

$$\phi_{k} = \frac{2\pi k}{N}$$

$$B_{n}(r_{0}) = \frac{1}{\pi} \int_{0}^{2\pi} B_{r}(r_{0}, \phi) \sin n\phi \approx \frac{2}{N} \sum_{k=0}^{N-1} B_{r}(r_{0}, \phi) \sin n\phi_{k}$$

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Main deflecting mode (TM_{110} mode) of an axially symmetric cavity:

• Only dipolar variation (n = 1)

As long as the cavity is far from axial symmetry...

- All the remaining multipolar components (n > 1) might be present!
- Not only the desired dipolar kick, but also higher order kicks.

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Main deflecting mode (TM_{110} mode) of an axially symmetric cavity:

• Only dipolar variation (n = 1)

As long as the cavity is far from axial symmetry...

- All the remaining multipolar components (n > 1) might be present!
- Not only the desired dipolar kick, but also higher order kicks.

Main deflecting mode (TM_{110} mode) of an axially symmetric cavity:

• Only dipolar variation (n = 1)

As long as the cavity is far from axial symmetry...

- All the remaining multipolar components (n > 1) might be present!
- Not only the desired dipolar kick, but also higher order kicks.

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

The different perturbation depend on the order:

- Quadrupolar kick (n=2): Linear tune shift.
- Sextupolar kick (n=3): Chromaticity shift and coupling.
- Octupolar kick (n=4): Amplitude detuning.

Why do we care about multipoles in crab cavities? Because of the beam size: At the location of CC is quite large (roughly 1 cm for 1σ in the transverse direction). At the interaction point is approx. 10 μm for 1σ.

The different perturbation depend on the order:

- Quadrupolar kick (n=2): Linear tune shift.
- Sextupolar kick (n=3): Chromaticity shift and coupling.
- Octupolar kick (n=4): Amplitude detuning.

Why do we care about multipoles in crab cavities?

Because of the beam size:

- At the location of CC is quite large (roughly 1 cm for 1σ in the transverse direction).
- ullet At the interaction point is approx. 10 $\mu{\rm m}$ for 1σ

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

The different perturbation depend on the order:

- Quadrupolar kick (n=2): Linear tune shift.
- Sextupolar kick (n=3): Chromaticity shift and coupling.
- Octupolar kick (n=4): Amplitude detuning.

Why do we care about multipoles in crab cavities?

Because of the beam size:

- At the location of CC is quite large (roughly 1 cm for 1σ in the transverse direction).
- At the interaction point is approx. 10 μm for 1σ .

Transverse RF kicks:

Lorentz force

$$\Delta p_{\perp}(r,\phi) = \frac{1}{v_z} \int_0^L F_{\perp} dz = \frac{q}{c} \int_0^L [E_{\perp} + v_z \times B_{\perp}] dz$$

Panofsky-Wenzel theorem

$$\Delta p_{\perp}(r,\phi) = \frac{jq}{\omega} \int_0^L \nabla_{\perp} E_{acc}(r,\phi,z) dz,$$
where $E_{acc} = E_z e^{jkz}$ is the accelerating field.

Assumptions made valid for the LHC:

- The particle is moving parallel to the z axis,
- at the speed of light.

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Introduction RF Multipole Theory Latest Cavity Analysis Measurements Conclusions Acknowledgements

Transverse RF kicks:

Lorentz force

$$\Delta p_{\perp}(r,\phi) = \frac{1}{v_z} \int_0^L F_{\perp} dz = \frac{q}{c} \int_0^L [E_{\perp} + v_z \times B_{\perp}] dz$$

Panofsky-Wenzel theorem

$$\Delta p_{\perp}(r,\phi) = \frac{jq}{\omega} \int_0^L \nabla_{\perp} E_{acc}(r,\phi,z) dz,$$
where $E_{acc} = E_z e^{jkz}$ is the accelerating field.

Assumptions made valid for the LHC:

• The particle is moving parallel to the z axis,

• at the speed of light.

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Introduction RF Multipole Theory Latest Cavity Analysis Measurements Conclusions Acknowledgements

Transverse RF kicks:

Assumptions made valid for the LHC:

- The particle is moving parallel to the z axis,
- at the speed of light.

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Introduction RF Multipole Theory O0000 Latest Cavity Analysis Measurements Conclusions Acknowledgements

RF Multipoles versus Magnetic Multipoles

Magnetic multipoles

- Static.
- Kick non-dependent on the longitudinal position of particles.

RF multipoles

- Harmonically oscillating (ω_{RF}) .
- Kick does depend on the RF phase of the particle.

Equating the RF and magnetic multipoles...

$$B_{\perp}^{(n)} = \frac{1}{qc} F_{\perp}^{(n)} = \frac{nj}{\omega} E_{acc}^{(n)} \qquad [Tm/m^n]$$

The RF kick coefficients...

$$b_n = \int_0^L B_{\perp}^{(n)} \, \mathrm{d}z \in \mathbb{C} \qquad [Tm/m^{n-1}]$$

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

RF Multipoles versus Magnetic Multipoles

Magnetic multipoles

- Static.
- Kick non-dependent on the longitudinal position of particles.

RF multipoles

- Harmonically oscillating (ω_{RF}) .
- Kick does depend on the RF phase of the particle.

Equating the RF and magnetic multipoles...

$$B_{\perp}^{(n)} = \frac{1}{qc} F_{\perp}^{(n)} = \frac{nj}{\omega} E_{acc}^{(n)} \qquad [Tm/m^n]$$

The RF kick coefficients...

$$b_n = \int_0^L B_\perp^{(n)} \, \mathrm{d} z \in \mathbb{C} \qquad [Tm/m^{n-1}]$$

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

RF Multipoles versus Magnetic Multipoles

Magnetic multipoles

- Static.
- Kick non-dependent on the longitudinal position of particles.

RF multipoles

- Harmonically oscillating (ω_{RF}) .
- Kick does depend on the RF phase of the particle.

Equating the RF and magnetic multipoles...

$$B_{\perp}^{(n)} = \frac{1}{qc} F_{\perp}^{(n)} = \frac{nj}{\omega} E_{acc}^{(n)} \qquad [Tm/m^n]$$

The RF kick coefficients...

$$b_n = \int_0^L B_{\perp}^{(n)} \, \mathrm{d} z \in \mathbb{C} \qquad [Tm/m^{n-1}]$$

Introduction	RF Multipole Theory 000000	Latest Cavity Analysis	Measurements	Conclusions ○	Acknowledgements O
Outline					

- 2 RF Multipole Theory
- 3 Latest Cavity Analysis
 - Measurement Setup
- 5 Summary and Conclusions
 - 6 Acknowledgements

Introduction RF Multipole Theory Occose Sector Analysis Measurements Conclusions Acknowledgements Occose Sector Se

- Mesh in the vicinity of the beam axis:
 7 mm for r < 20 mm
 15 mm for r < 30 mm
- Surface approx. $\sim 1 \text{mm}$
- Curvilinear elements
- Second order basis functions
- # tetrahedra $\sim 3.810^5$
- Server: 1.00 TB of RAM, 4 processors @ 2.67 GHz
- Simulation time $\sim 6-12$ h

A D A A A A A A A A Grudiev

14 / 28

Introduction RF Multipole Theory Cavity Analysis Measurements Conclusions Acknowledgements Oconclusions Oconclu

- Mesh in the vicinity of the beam axis:
 7 mm for r < 20 mm
 15 mm for r < 30 mm
- Surface approx. ∽ 1mm
- Curvilinear elements
- Second order basis functions
- # tetrahedra $\sim 3.810^5$
- Server: 1.00 TB of RAM, 4 processors @ 2.67 GHz
- Simulation time $\sim 6-12$ h

A D A A A A A A A A Grudiev

14 / 28

Introduction RF Multipole Theory Occord Analysis Measurements Conclusions Acknowledgements Occord Analysis Measurements Occord Analysis Measurements Occord Analysis Occord An

- Mesh in the vicinity of the beam axis:
 7 mm for r < 20 mm
 15 mm for r < 30 mm
- Surface approx. ∽ 1mm
- Curvilinear elements
- Second order basis functions
- # tetrahedra $\sim 3.8\,10^5$
- Server: 1.00 TB of RAM, 4 processors @ 2.67 GHz
- Simulation time $\sim 6-12$ h

A D A A A A A A A A Grudiev

14 / 28

 $\begin{array}{c|c} Introduction \\ 0000 \end{array} & \begin{array}{c} RF & Multipole Theory \\ 00000 \end{array} & \begin{array}{c} Latest Cavity Analysis \\ 0000 \end{array} & \begin{array}{c} Measurements \\ 00000 \end{array} & \begin{array}{c} Conclusions \\ 0 \end{array} & \begin{array}{c} Acknowledgements \\ 0 \end{array} \\ \end{array}$

Multipolar Kicks for the Latest Geometries

2012 updated geometries

* No couplers yet

	RF Dipole		$\frac{1}{4}$ -wave		$\frac{1}{4}$ -wave		4-rod	
$V_x = 10$ MV	$\Re(b_2)$	$\Im(b_2)$	$\Re(b_3)$	ᢒ(b₃)	$\Re(b_4)$	ᢒ(b₄)		
$b_2[mTm/m]$	0	0	0	0	0	0		
$b_3[mTm/m^2]$	4500	0	1100	0	1160	0		
$b_4[mTm/m^3]$	0	0	0	0	0	0		

イロト イポト イヨト イヨト

How imperfections in the manufacturing may affect the performance of the cavity

Preliminar studies on the 1/4-wave cavity without ports

∃ ► < ∃ ►</p>

How imperfections in the manufacturing may affect the performance of the cavity

Preliminar studies on the 1/4-wave cavity without ports

Tuning the height of one plate

Introduction 0000	RF Multipole Theory	Latest Cavity Analysis	Measurements	Conclusions ○	Acknowledgements O
Outline					

1 Introduction

2 RF Multipole Theory

3 Latest Cavity Analysis

Measurement Setup

5 Summary and Conclusions

6 Acknowledgements

Introduction 0000	RF Multipole Theory	Latest Cavity Analysis	Measurements ●00000	Conclusions ○	Acknowledgements O
Cavity	Measuremen [.]	ts			

Ultimate Aim

Experimental verification of the **RF multipolar components** for the crab cavities under study, by means of **bead-pull measurements**.

Bead-Pull Measurements

- Examine the EM field inside a cavity during low-power tests.
- Based on the Slater Perturbation theory:

$$\frac{\Delta\omega}{\omega_0} \propto \frac{\int_{\Delta V} (\Delta\mu_0 H^2 + \Delta\varepsilon_0 E^2) \,\mathrm{d}V}{\int_V (\mu_0 H^2 + \varepsilon_0 E^2) \,\mathrm{d}V}$$

Introduction	RF Multipole Theory	Latest Cavity Analysis	Measurements ●00000	Conclusions ○	Acknowledgements O
Cavity	Measuremen	ts			

Ultimate Aim

Experimental verification of the **RF multipolar components** for the crab cavities under study, by means of **bead-pull measurements**.

Bead-Pull Measurements

- Examine the EM field inside a cavity during low-power tests.
- Based on the Slater Perturbation theory:

$$\frac{\Delta\omega}{\omega_0} \propto \frac{\int_{\Delta V} (\Delta\mu_0 H^2 + \Delta\varepsilon_0 E^2) \,\mathrm{d}V}{\int_V (\mu_0 H^2 + \varepsilon_0 E^2) \,\mathrm{d}V}$$

Introduction Latest Cavity Analysis **RF** Multipole Theory Measurements Conclusions Acknowledgements 000000

Typical Bead-Pull System

Source: Michal Jarosz, "Bead-Pull Measurements", CERN project report.

< ロ > (同 > (回 > (回 >))

3

RF Multipole Bead-Pull Measurements

Customarily used to measure the on-axis E field in accelerating cavities.

Our requirements

- Rather than in the fundamental field distribution, we are interested in the higher order components.
- Need to carry out off-axis measurements.
- Rotational degree of freedom needed.

イロト イポト イヨト イヨト

RF Multipole Bead-Pull Measurements

Customarily used to measure the on-axis E field in accelerating cavities.

Our requirements

- Rather than in the fundamental field distribution, we are interested in the higher order components.
- Need to carry out off-axis measurements.
- Rotational degree of freedom needed.

Introduction RF Multipole Theory Latest Cavity Analysis Measurements Conclusions Acknowledgements o

RF Multipole Bead-Pull Measurements

Customarily used to measure the on-axis E field in accelerating cavities.

Our requirements

- Rather than in the fundamental field distribution, we are interested in the higher order components.
- Need to carry out off-axis measurements.
- Rotational degree of freedom needed.

Introduction RF Multipole Theory Latest Cavity Analysis Measurements Ocioco Acknowledgements ocioco Ac

RF Multipole Bead-Pull Measurements

Customarily used to measure the on-axis E field in accelerating cavities.

Our requirements

- Rather than in the fundamental field distribution, we are interested in the higher order components.
- Need to carry out off-axis measurements.
- Rotational degree of freedom needed.

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Introduction RF Multipole Theory Latest Cavity Analysis Measurements Ocioco Acknowledgements ocioco Ac

RF Multipole Bead-Pull Measurements

Customarily used to measure the on-axis E field in accelerating cavities.

Our requirements

- Rather than in the fundamental field distribution, we are interested in the higher order components.
- Need to carry out off-axis measurements.
- Rotational degree of freedom needed.

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Introduction	RF Multipole Theory	Latest Cavity Analysis	Measurements 000●00	Conclusions ○	Acknowledgements O
	in the Dard				

Bead-Pull Requirements

- Versatile for the measurements of the 3 different crab cavities.
- Capacity to position the bead along a circumference path.
- Ensure great stability to warranty high-precision measurements.
- Avoid the sagging of the bead.

- Inclusion of linear slides to cover all the points for each transverse plane.
- Stable bead-pull bench to avoid vibration.
- Place the cavity vertically to pull the bead vertically too.

					-
Introduction	RF Multipole Theory	Latest Cavity Analysis	Measurements 000●00	Conclusions ⊙	Acknowledgements o

Bead-Pull Requirements

- Versatile for the measurements of the 3 different crab cavities.
- Capacity to position the bead along a circumference path.
- Ensure great stability to warranty high-precision measurements.
- Avoid the sagging of the bead.

- Inclusion of linear slides to cover all the points for each transverse plane.
- Stable bead-pull bench to avoid vibration.
- Place the cavity vertically to pull the bead vertically too.

					-
Introduction	RF Multipole Theory	Latest Cavity Analysis	Measurements 000●00	Conclusions ⊙	Acknowledgements o

Bead-Pull Requirements

- Versatile for the measurements of the 3 different crab cavities.
- Capacity to position the bead along a circumference path.
- Ensure great stability to warranty high-precision measurements.
- Avoid the sagging of the bead.

- Inclusion of linear slides to cover all the points for each transverse plane.
- Stable bead-pull bench to avoid vibration.
- Place the cavity vertically to pull the bead vertically too.

Introduction	RF Multipole Theory	Latest Cavity Analysis	Measurements 000●00	Conclusions ○	Acknowledgements O		

Bead-Pull Requirements

- Versatile for the measurements of the 3 different crab cavities.
- Capacity to position the bead along a circumference path.
- Ensure great stability to warranty high-precision measurements.
- Avoid the sagging of the bead.

- Inclusion of linear slides to cover all the points for each transverse plane.
- Stable bead-pull bench to avoid vibration.
- Place the cavity vertically to pull the bead vertically too.

Introduction RF Multipole Theory Latest Cavity Analysis Measurements Conclusions Acknowledgements Conclusion Conclusio Conclusion Conclusion Conclusion C

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Introduction RF Multipole Theory Latest Cavity Analysis Measurements Conclusions Acknowledgements

Latest Idea for Bead-Pull Bench

María Navarro-Tapia, Alexej Grudiev, Rama Calaga

Introduction	RF Multipole Theory	Latest Cavity Analysis	Measurements	Conclusions ○	Acknowledgements O
Outline					

1 Introduction

2 RF Multipole Theory

3 Latest Cavity Analysis

4 Measurement Setup

5 Summary and Conclusions

6 Acknowledgements

- Three different cavities (**RF dipole**, 1/4-wave and 4-rod) have been studied for the **higher-order multipole** viewpoint.
- A **tolerance study** is ongoing on for the 1/4-wave cavity to assess the sensitivity of the current design to errors in the manufacturing.
- A **bead-pull** setup is being considered for having experimental evidence of the multipole coefficients.

- Three different cavities (**RF dipole**, 1/4-wave and 4-rod) have been studied for the **higher-order multipole** viewpoint.
- A **tolerance study** is ongoing on for the 1/4-wave cavity to assess the sensitivity of the current design to errors in the manufacturing.
- A **bead-pull** setup is being considered for having experimental evidence of the multipole coefficients.

- Three different cavities (**RF dipole**, 1/4-wave and 4-rod) have been studied for the higher-order multipole viewpoint.
- A **tolerance study** is ongoing on for the 1/4-wave cavity to assess the sensitivity of the current design to errors in the manufacturing.
- A **bead-pull** setup is being considered for having experimental evidence of the multipole coefficients.

The HiLumi LHC Design Study (a sub-system of HL-LHC) is cofunded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404

Many thanks to L. Alberty and F. Pillon.

Introduction	RF Multipole Theory	Latest Cavity Analysis	Measurements	Conclusions	Acknowledgements

Radiofrequency Multipoles in LHC Crab Cavities

María Navarro-Tapia Alexej Grudiev Rama Calaga

Radiofrequency Group, Beams Department CERN, Geneva (Switzerland)

Fourth RFTech Workshop