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Objectives

● Give an overview of techniques used for RF 
synchronization (RF phase reference) systems 
working with high accuracy

● Show the most important problems and 
limitations of RF synchronization subsystems
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Synchronization Signals

There are various types of signals (frequently confused by users):

● Analog (RF phase reference, LO)

● Clocks (digital circuits, ADC, DAC, CPU)

● Trigger signals (digital subsystems, CPU)

● Optical pulse trains (lasers, diagnostics, experiments)

~
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Demand for Precise RF Phase Reference Signals

● LLRF systems of accelerators (LO for 
downconverters, klystron drive phase 
reference), diagnostics (BPM, HOM, ...)

● Particularly at Free-Electron Lasers (FEL) 
LINACs

● Required synchronization accuracy nowadays 
reaches sub 10fs levels (e.g. European-XFEL)
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RF Synchronization System Components

● Master Oscillator
● Phase Reference Distribution (for harmonic RF 

signals)
● Diagnostics
● Interfaces to other subsystems
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Generic RF Synchronization System
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Some Basic Definitions

Before we go to RF Synch. sub-components
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We Would Like to Distribute Pure Sine Wave

BUT
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Harmonic Signal With Noise Components

v t  = V 0 sin 2  0t 

v t  = [V 0   t ] sin [2 0t   t ]

V0 - the nominal peak voltage amplitude

ν0  - nominal frequency, called also instantaneous

ε(t) - deviation of amplitude from nominal value

φ(t) - deviation of phase from nominal value - noise component

Ideal Signal

Noisy Signal

In Time Domain
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Short and Long Term Instabilities

The short-term instability refers to all phase/frequency changes 
about the nominal of less than a few second duration.

- derives from a “fast” phase noise components (f > 1 Hz)
- expressed in units of spectral densities or timing jitter

The long-term instability refers to the phase/frequency variations 
that occur over time periods longer than a few seconds

- derives from slow processes like long term frequency drifts, aging and susceptibility 
to environmental parameters like temperature
- expressed in units of degree, second or ppm per time period (minute, hour, day ...)
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Frequency, Time and Angle – Basic Relationships

TT/2

Why do we use “ps” when you talk about phase??

T =
1
0

Time domain 
measure

T → 360o in the angular domain

t =
T

360o
Phase to time 
conversion

Example: v
0
 = 1.3GHz → T = ~769ps, 1o → 2,13 ps 

Time domain measure is convenient for phase changes in distribution media (by means 
of propagation delay change) because it does not depend on the signal frequency.
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Phase Noise

dBc

1Hz

ν

Po
w

er

ν 0

ℒ  f  =

powerdensity inone
phase noisemodulation
sideband , per Hz
total signal power

=
1
2
S f 

Power Spectral Density 
measured in dBc/Hz

f = v−v0 offset from the carrier frequency

It is a frequency domain measure of signal phase instabilities ф(t) 
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Phase / Timing Jitter
It is a time domain measure of signal phase instabilities ф(t) 

Phase jitter  jitter
2 is calculated in units of radian

Timing jitter  tRMS is calculated in units of seconds RMS. Used 
frequently with digital signals 

Figure source: Corning Frequency Control
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Phase Noise and Jitter Relationship

 jitter
2

=∫
f 1

f 2

S f df

 t rms = 
1

2 0

∫f 1

f 2

S f df

1
2
S f 

Jitter is the integral of Sφ( f ) over the Fourier frequencies of application
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Phase Noise Contributions to Jitter
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Generic RF Synchronization System - MO

~
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Master Oscillator

This device is providing the reference signal for 
the entire synchronization system

Single signal source

But in practice ...
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Master Oscillator System Example

1.3 GHz PLL 1.3 GHz POWER 
AMPLIFIER

1.3 GHz

PA – Power Amplifier

44 dBm

30 dBm

LOW POWER PARTOCXO

9 MHz

~ 81 MHz PLL
x 9

108 MHz PLL
x 12

Div. 
: 3

Div. 
: 2

Div. 
: 9

Div. 
: 9

PLL 
x 144

PA

27 MHz

13.5 MHz

9 MHz

1 MHz

108 MHz

PA

1.3 GHz DISTRI-
BUTION BOX

81 MHz POWER 
AMPLIFIER

81 MHz
40 dBm

PA

81 MHz DISTRI-
BUTION BOX

DDS 50 Hz

FLASH “MO” Scheme*

* will be presented in more detail by Henning Weddig

The MO

The MO System

But for convenience 
people call it MO
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FLASH MO System Racks and Crates
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MO System

● MO reference generator
● Frequency generation scheme
● Signal level adjustment (power amplifiers)
● Splitters and interface to distribution links
● Power supply (very important issue!), 

sometimes must be unbreakable
● Diagnostics
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Most Important Task of MO System

● Generate signal with sufficient stability. Usually short-
term stability (phase noise) is of concern.

● Well known RF generation techniques (OCXO, PLL, 
RF Synthesis).

● Stability of ps to ns is easy to achieve (and very 
cheap)

● No problem to go down to 20 fs (but the last 100 fs 
gets expensive!)

● At FLASH we demonstrated source with 30 fs of jitter 
@ 1.3 GHz (10 Hz to 1MHz BW)
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Laboratory Prototype of XFEL MO (1.3 GHz)

 Reference: OCXO 100MHz

 VCO: 1.3 GHz DRO from PSI

 Output power + 13 dBm

 Jitter 42 fsec RMS (10Hz to 1 MHz)

by (Ł. Zembala, H. Weddig)
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Stable Signal Distribution
Main Distribution to 
RF Stations and 
other accelerator 
subsystems

Local Distribution: 
racks, crates, PCBs

The importance of a local distribution is frequently underestimated
Last 2 meters of a poor quality cable exposed to vibrations or a “wrong” track on a PCB 
can destroy the signal performance achieved over hundreds of meters of distribution! 

~
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RFS – Radio Frequency Station
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Most Important Task of Signal Distribution

● Deliver the phase reference signal with 
specified degradation compared to the MO 
source and with specified output power level
– Usually phase noise/jitter is not affected 

significantly in coax cable links

– Cheap optical links limit jitter performance to few – 
few tens of ps

– The biggest problem: long term phase drifts in 
distribution media
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RF vs Optical Synchronization 
The MO and phase reference distribution can be realized 
either in RF technology or in optical (laser oscillators and 
synchronization)

● RF:

– mature technology

– well known subsystems

– limited performance (but sufficient for many applications)

– sensitive to EMI

● Optical:

– low loss, easier installation (fiber as media)

– promising performance (sub-fs accuracy estimated)

– high performance systems still under development  - reliability not 
proven



RF TECH Workshop, Annecy,  26.03.2013Krzysztof Czuba 26

Distribution Media: Cable vs. Optical Fiber

Parameter Coaxial Fiber

Attenuation High
Low at any RF 

frequency

Distribution  distance short long

Temperature 
coefficient of phase 

lenghth
~10-5/oC ~10-5/oC

Need of feedback 
controlling phase 

drifts
YES YES

Price Relatively high
Fiber – low but

Tx and Rx high

The decision not obvious and usually some compromise is needed
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Example: Phase Drift Requirements for European 
XFEL

● Injector and booster devices: 100 fs p-p drift 
within 1h. Distribution distance ~150 m

● Main linac: 1 ps (~0.5o) p-p, distribution 
distance ~1.7 km

● Within 100 fs light travels a distance of ~30μm

● We need to assure sub ~30μm of length stabilization of 150 m 
long link

● Is this easy to do?



RF TECH Workshop, Annecy,  26.03.2013Krzysztof Czuba 28

Phase Drifts in Distribution Media

~ Target 
Device

Drifts caused mainly by 
temperature changes

Electrical / optical 
length change

Reason of drifts:

- In fiber: neff change

- In cable: physical dimension and 
dielectric properties change

RF signal 
source

1.3 GHz signal phase change in 5km 
of fiber. 10 oC temperature change
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1400o @ 1.3 GHz 
corresponds to ~2800 ps!!

Feedback on phase required!!
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Temperature Measurements of Coax Cables

Sometimes is a challenging task...



RF TECH Workshop, Annecy,  26.03.2013Krzysztof Czuba 30

Phase Drifts in Coax Cables

Temperature coefficients of poor quality cables reach thousands of ppm/oC 
→ 1 meter of such cable inside of a rack can be worse than hundreds 
of meters of a thick distribution cable!

More data in: K.Czuba, D. 
Sikora, “Temperature stability of 
coaxial cables”, ACTA PHYSICA 
POLONICA, Vol. 119, Number 4, 
Warsaw, April 2011, p. 553

Cable Timing drift 

[fs/m/K]

Loss@216MHz 
[dB/100m]

Loss@1.3GHz 
[dB/100m]

coaxial cable 3/8” (Andrew, 
Heliax)*

-10..25
(opt. at ≈ 25° C to 36° C)*

5 14.2

coaxial cable 7/8” (RFS, 
Cellflex)*

0..35* 1.7 4.8
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How to Overcome Drift Problem

● Stabilize temperature (cable or fiber) 

feasible for relatively short distances (~100m) and 
when required long term stability is significantly 
above 1 ps range

● Active compensation (feedback on drifts)
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Active Drift Compensation Example

Idea by Ed Cullerton and Brian Chase (Fermilab), Presented at LLRF2011, DESY
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First Experiments

MO

V f

−V f

Γs=
V f
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=−1
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j φ S
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1
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−γ(L1+ L2 )⋅T 2
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1
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−V f⋅e
−γ(L1+ L2 )⋅T 3

−V f⋅e
−γ(L1+ L2 )⋅T 2

⋅C

V f⋅e
γ( L1+ L2)⋅

C

T 3

L1,γ=α+ jβ L3, γ=α+ jβ
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1

T 3
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attenuation and phase adjustment (A•ejφ)

V f⋅e
γL1⋅

C

T 2
⋅A1e

j φ1 V f⋅e
γ( L1+ L2)⋅

C

T 3
⋅A2 e

jφ 2 V f⋅e
γ( L1+ L2+ L3)⋅

C

T 4
⋅A3e

jφ 3

when : e
−αL1⋅T=e

α L1⋅
1

T 2
⋅A1e

jφ 1 ⇔ A1 e
jφ1=T 3e

−2 α L1

V 1=−V f⋅e
−α L1⋅e

−βL1⋅T⋅C+ V f⋅e
αL1⋅e

βL 1⋅
C

T 2
⋅A1 e

jφ1

V 1=V f⋅C⋅e−α L1⋅T⋅2j⋅sin(β L1)

when : A2e
jφ2=T 5e−2 α(L1+ L2 )

V 2=V f⋅C⋅e−α( L1+ L2)⋅T 2
⋅2j⋅sin [β(L1+ L2)]

when : A3e
jφ3=T 7e−2 α(L1+ L2+ L3 )

V 3=V f⋅C⋅e−α( L1+ L2+ L3)⋅T 3
⋅2j⋅sin[β (L1+ L2+ L3)]

First test setups demonstrated drift suppression factors in range of 10 to 50. 
There is still room for improvement.

Figure: Courtesy of D. Sikora
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Phase Drifts in Other Components

● All RF reference distribution system components (like 
power splitters, attenuators, directional couplers, 
amplifiers …) introduce drifts on the level of sub-ps to 
100 ps/oC 

● Again the main reason is temperature change

● We characterized many types of components

● In general it is possible to use components with opposite 
phase coefficients to compensate

● In some cases temperature stabilization down to +/- 0.1 oC 
is necessary 
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Power Amplifier Phase Drift Compensation

Good experience from FLASH MO with high power modules. 
Developed phase compensation circuit. 

Demonstrated drift reduction from 350 fs/K to 34 fs/K

Figures: Courtesy of S. Jablonski
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Summary

● Main concern of a synchronization system 
designer is to assure low phase noise and long 
term drifts

● Phase noise requirements are usually relatively 
easy to fulfill

● Most difficult task is phase drift stabilization
● It becomes one the most critical problems for 

large machines
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Thank You for Your Attention!
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