

Overview of Longitudinal Beam Based Feedback at FLASH

Jarosław Szewiński NCBJ Świerk

4th RFTech Workshop, Annecy, 25-26.03.2013

Agenda

- Introduction
- Beam based feedback principle
 - Energy feedback
 - Compression feedback
- Installation in FLASH
- Results
- Actual development uTCA upgrade
- Plans for future upgrades

The problem

- In circular accelerators, bunch passes each station several times, and its parameters (energy, compression) can be tuned
- In the linear accelerators, each bunch travels through the machine only once, and we have no other chance to correct it
- We can not correct the bunch which was measured, we have to estimate corrections for the subsequent bunches

Beam parameters drifts

- Beam parameters changes are monotonic
- We can estimate the corrections for the next bunches

Beam stability

 Beam stability decreases with the higher LLRF feedback gains

LLRF system architecture

LLRF system architecture

Energy feedback

- Bunch energy depends on the amplitude of the RF field
- Bunch energy is measured by difference in arrival time of the bunch (w.r.t reference synchronization source)
- Energy fluctuations are converted to the arrival time changes in the bunch compressor
- Arrival time is measured by Bunch Arrival time Monitor (BAM)

Bunch compression

- Bunch compression makes the electrons of different energies travel over different ways.
- This converts energy changes to arrival time changes

Bunch Arrival time Monitor (BAM)

Response:

Laser pulses modulation

Amplitude of laser pulses generated by the reference synchronization system (MLO) is modulated by the arrival time of the traveling bunch

Laser pulses modulation

The amplitude of the correct in time bunch is same as the amplitude of the unmodulated pulses, due to zero-crossing

Laser pulse amplitude measurement

Signal from photo diode is sampled using two ADCs, with clock signal shifted in phase

Laser pulse amplitude measurement

$$A_{corr} = \frac{Peak_{mod} - Base_{mod}}{Peak_{unmod} - Base_{unmod}}$$

Compression feedback

- Bunch compression depends the phase of the RF field
- Bunch compression is measured by the pyroelectric detector (PYRO)
- PYRO is located after the bunch compressor and it measures CSR radiation from it
- Amplitude of generated electric pulse is proportional to the compression of the bunch which generated radiation in the bunch compressor

Compression feedback

$$P_{corr} = \sum peak - \sum background$$

Installation at FLASH

- BAMs:
 - 1UBC2
 - 3DBC2
 - 4DBC3
 - 18ACC7

- PYROs:
 - 3DBC2
 - 4DBC3

- Electronic devices:
 - ACB2.1 (for BBF)
 - SimconDSP (for LLRF)

ACB 2.1

- VME-based board for processing signals from beam detectors
 - 1x Virtex-II Pro FPGA
 - Up to 4 ADCs (LTC2206, 16-bit, 125 MSPS has been used)
 - 3x AD9510 clock distribution chip
 - 1x SFP interface (for transferring correction to LLRF system)

ACB 2.1

Analog Front-end

Results – Arrival time jitter

Arrival time jitter over the bunch train

Results – Correlation of 2 BAMs

Results - SASE

SASE without beam feedback

Results - SASE

SASE with beam feedback

Next steps

- BBF system has been developed in the the VME technology
- It was tested with the VME LLRF system, but it can provide control corrections to the new uTCA LLRF System (using SFP fiber optic link)
- The next natural step for BBF is upgrade to uTCA, to have system compatible with the rest of FLASH electronics

uTCA upgrade

- Laser pulses are generated with the frequency of 216 MHz
- ACB 2.1 was able to sample with frequency of 108 MHz (every second laser pulse)
- Bunches are generated in FLASH with frequency of 1 MHz – so every 108-th laser pusle was modulated
- In the new solution will sample every pulse with the rate of 216 MHz

uTCA BBF Upgrade

Improvements	ACB 2.1	uFMC25
Faster ADCs	125 MSPS	up to 1 GSPS
Newer FPGA	Virtex-II Pro	Virtex-5
Mezzanine cards	Custom	FMC (commercial std.)
Remote firmware update	No	Yes
Backplane Interconnect	VME (32 bit)	uTCA (PCIe, Eth)
Diagnostic interface	RS-232	USB
Ethernet	No	Yes

uFMC25v1 board

uFMC25 ver.1 is being tested now

uFMC25v2

uFMC25 ver.2 is designed and prepared for production

uFMC25v2 block diagram

BAM FMC Mezzanine board

Courtesy: Samer Bou Habib

BAM FMC Block diagram

Courtesy: Samer Bou Habib

Actual sampling scheme

108 MHz sampling

Every second laser pulse is sampled

RFTech

New sampling scheme

216 MHz sampling

We do not have to look for modulated pulse,

all pulses are sampled

RFTech

Signal distribution

Signal distribution with 2 ADCs - "T" distribution is weak point

Solution - Faster ADC

432 MHz – only one ADC is needed, but ringing may affect the baseline sample

Solution - Even faster ADC

632 MHz sampling – avoids sampling the baseline in the ringing area

The End

Thank You

