First Results from the NPDGamma Experiment at the Spallation Neutron Source

W.S. Wilburn*

Los Alamos National Laboratory

*Thanks to N. Fomin for many slides.

Hadronic Weak Interaction

- Weak couplings $(f_{\pi}, h_{\rho}^{0,1,1',2}, h_{\omega}^{0,1})$ modified by strong interaction
- Can calculate approx. from QCD
- Need weak couplings from experiment
- Weak interaction in nuclei:

$$V = \sum_{m,\Delta I} h_m^{\Delta I} V_m^{\Delta I}$$

$$\langle Q_{pv} \rangle = 2 \sum_{m,\Delta I} \langle \psi | Q_{pv} | \phi \rangle \frac{h_m^{\Delta I} \langle \psi | V_m^{\Delta I} | \phi \rangle}{\Delta E}$$

example: $n + n \rightarrow n + n$

Hadronic Weak Interaction Models

1. DDH model – uses valence quarks to calculate effective PV meson-nucleon coupling directly from SM via 7 weak meson coupling constants

Observables can be written as their combinations

 $A = a_{\pi}^{1} f_{\pi}^{1} + a_{\rho}^{0} h_{\rho}^{0} + a_{\rho}^{1} h_{\rho}^{1} + a_{\rho}^{2} h_{\rho}^{2} + a_{\omega}^{0} h_{\omega}^{0} + a_{\omega}^{1} h_{\omega}^{1}$

	$n+p \bullet d+\gamma$	$n+d \bullet t+\gamma$	п-р	n - ⁴ He φ_{PV}	p-p Δσ/σ	<i>p-</i> ⁴ He Δσ/σ
	$A_{\gamma}(ppm)$	$A_{\gamma}(ppm)$	(µrad/m)	(µrad/m)	(ppm)	(ppm)
f_{π}	-0.107	-0.92	-3.12	-0.97		-0.340
$h_{ ho}^{- heta}$		-0.50	-0.23	-0.32	0.079	0.140
$h_{ ho}^{-1}$	-0.001	0.103		0.11	0.079	0.047
$h_{ ho}^{2}$		0.053	-0.25		0.032	
$h_{\omega}^{\ \ heta}$		-0.160	-0.23	-0.22	-0.073	0.059
h_{ω}^{l}	0.003	0.002		0.22	0.073	0.059

 $f_{\pi} \sim 4.5 \mathrm{x} 10^{-7}$ Wea

Weak π -nucleon coupling (long range)

$$A_{\gamma} \approx -0.11 f_{\pi}^{1}$$

HWI Models - Continued

2. Effective Field Theory

- developed by Holstein, Ramsey-Musolf, van Kolck, Zhu and Maekawa
- model-independent

1

 NN potentials are expressed in terms of 12 parameters, whose linear combinations give us 5 low energy coupling constants

connect to 5 parity-odd S-P NN amplitudes

$$\lambda_{t}, \lambda_{s}^{I=0,1,2}, \rho_{t} \quad \text{Corresponding to} \qquad \begin{array}{c} {}^{1}S_{0} \rightarrow {}^{3}P_{0} \quad (\Delta I=0,1,2) \\ {}^{3}S_{1} \rightarrow {}^{1}P_{1} \quad (\Delta I=0) \\ \\ \hline \lambda_{t}, \lambda_{s}^{\vec{n}p} \approx -0.27 \tilde{C}_{6}^{\pi} - 0.09 m_{N} \rho_{t} \end{array} \qquad \begin{array}{c} {}^{3}S_{1} \rightarrow {}^{3}P_{1} \quad (\Delta I=1) \\ \\ \hline 3S_{1} \rightarrow {}^{3}P_{1} \quad (\Delta I=1) \end{array}$$

3. Lattice QCD (NEW)

$$f_{\pi NN}^{1} = 1.099 \pm 0.505 + 0.058 - 0.064 [x10^{-7}]$$

– J. Wasem, PRC C85 (2012)

Previous measurements

1. Measurement of the circular polarization of emitted γ rays in the ¹⁸F transition 0⁻(1.08MeV) \rightarrow 1⁺(g.s)

Result: $|f_{\pi}| \le 1.3 \times 10^{-7}$

Motivation for NPDGamma

- 2. ¹³³Cs Anapole moment measurement
 - Atomic Spectroscopy result
 - (9.6±2.2)x10⁻⁷
 - f_π had to be separated from other effects

- Experiments suggest a small f_{π} (nearly zero)
 - corresponds to $\Delta I = 1$ transition (should be large)
 - $\Delta I=0,2$ do not contribute to A_v
 - Observations are not well understood ($\Delta I=0$ contribution appears to be large, and $\Delta I=1$ appears to be small)

NPDGamma

$$A_{\gamma} = \frac{1}{P_n} \frac{N_u - N_d}{N_u + N_d} \approx -0.11 f_{\pi} \sim -5 \times 10^{-8}$$

 $\Delta A_{\gamma} < 2 \times 10^{-7}$ (LANSCE)

 $\Delta A_{\gamma} = 1 \times 10^{-8}$ (SNS)

Spallation Neutron Source at ORNL

- 1.4 GeV protons, 60Hz
- Hg Spallation target → neutrons
- H₂ moderator
- 17 m SM guide, curved

Spallation Neutron Source

NPDGamma – Experimental Setup

Result from LANSCE run (2006) & Improvements for SNS

A $_{\gamma,UD}$ =(-1.2±2.0±0.2)x10⁻⁷

A $_{\gamma,LR} = (-1.8 \pm 2.1 \pm 0.2) \times 10^{-7}$

LANSCE SNS

Sensitivity	2x10 ⁻⁷	1x10 ⁻⁸
Polarizer	³ He polarizer (<mark>average</mark> 55% NP)	SuperMirror Polarizer (95% NP)
FOM (NP ²)	8.9x10 ⁷ /s	X200 improvement
Target	16L, LH ₂	New and improved, thinner windows

LH₂ target

• 16L vessel of liquid parahydrogen

• Ortho-hydrogen scatters the neutrons and leads to beam depolarization

ASME code approved pressure vessel See stamp!

LH₂ target - Parahydrogen

Orthohydrogen	I=1 (aligned spins)
Parahydrogen	I=0 (anti-aligned spin)

If *E_n* < *14.7meV*, cannot flip neutron spin

Para state dominates at low temperatures, helped by a catalyst (material with a solid paramagnetic surface)

- No safety issues from sensors in the hydrogen system
- Energy dependence of the neutron transmission can be used

Detector

Array

- 3π acceptance
- Current-mode experiment
- γ-rate ~100 MHz (single detector)
- Low noise solid-state amplifiers

Goal of the experiment: $dA_{\gamma} = 1e-8$

 Any instrumental asymmetries must be consistent with zero at 1e-9

Improved Understanding of systematic effects

PV asymmetries

•	Stern-Gerlach force	2x10 ⁻¹¹
•	Circularly polarized ys	9x10 ⁻¹³
•	In-flight β decay	1x10 ⁻¹¹
•	Capture on ⁶ Li	2x10 ⁻¹¹
•	Al γ's	1.3x10 ⁻⁸
•	Al β decay	1 x 10 ⁻¹⁰

Last two must be measured

PC LR asymmetries

- Mott-Schwinger in LH₂ (must be modeled)
- Parity-allowed $n+p \rightarrow d+\gamma$ 2x10⁻⁸
- Parity-allowed LR asymmetry in capture on AI=0
- These asymmetries can mix into the U-D channel if the detector and guide field are not aligned

Current Status of Hydrogen Data Collection

- Production Hydrogen Running \rightarrow Early May, 2012
- Have collected over **12**,000 "good" data runs

Current Status of Hydrogen Data Collection

- Production Hydrogen Running \rightarrow Early May, 2012
- Have collected over **12**,000 "good" data runs

Current Status of Hydrogen Data Collection

Summary

- A measurent of A_{γ} that will test theoretical predictions is underway
- NPDGamma will make a 20% measurement of the predicted effect: -5×10^{-8} (DDH)
- Data is currently being collected
- Preliminary results ($\Delta A_{\gamma} < 5 imes 10^{-8}$) coming soon

The NPDGamma collaboration

P. Alonzi³, R. Alacron¹, R. Allen⁴, S. Balascuta¹, L. Barron-Palos², S. Baeßler^{3,4}, A. Barzilov²⁵, J.D. Bowman⁴, M. Bychkov³, J.R. Calarco⁹, R.D. Carlini⁵, W.C. Chen⁶, T.E. Chupp⁷, C. Crawford⁸, M. Dabaghyan⁹, N. Fomin¹⁰, S.J. Freedman¹³, E. Frlež³, T.R. Gentile⁶, M.T. Gericke¹⁴ R.C. Gillis¹¹, K. Grammer¹², G.L. Greene^{4,12}, J. Hamblen²⁶, F. W. Hersman⁹, T. Ino¹⁵, G.L. Jones¹⁶, S. Kucucker¹², B. Lauss¹⁷, W. Lee¹⁸, M. Leuschner¹¹, W. Losowski¹¹, E. Martin⁸, R. Mahurin¹⁴, M. McCrea¹⁴, Y. Masuda¹⁵, J. Mei¹¹, G.S. Mitchell¹⁹, P. Mueller⁴, S. Muto¹⁵, M. Musgrave¹², H. Nann¹¹, I. Novikov²⁵, S. Page¹⁴, D.Počanic³, S.I. Penttila⁴, D. Ramsay^{14,20}, A. Salas Bacci¹⁰, S. Santra²¹, P.-N. Seo³, E. Sharapov²³, M. Sharma⁷, T. Smith²⁴, W.M. Snow¹¹, Z. Tang¹¹, W.S. Wilburn¹⁰, V. Yuan¹⁰

¹Arizona State University ²Universidad Nacional Autonoma de Mexico ³University of Virginia ⁴Oak Ridge National Laboratory ⁵Thomas Jefferson National Laboratory ⁶National Institute of Standards and Technology ⁷University of Michigan, Ann Arbor ⁸University of Kentucky ⁹University of New Hampshire ¹⁰Los Alamos National Laboratory ¹¹Indiana University ¹²University of Tennessee ¹³University of California at Berkeley ¹⁴University of Manitoba, Canada ¹⁵High Energy Accelerator Research Organization (KEK), Japan

¹⁶Hamilton College
 ¹⁷Paul Scherrer Institute, Switzerland
 ¹⁸Spallation Neutron Source
 ¹⁹University of California at Davis
 ²⁰TRIUMF, Canada
 ²¹Bhabha Atomic Research Center, India
 ²²Duke University
 ²³Joint Institute of Nuclear Research, Dubna, Russia
 ²⁴University of Dayton
 ²⁵Western Kentucky University
 ²⁶ University of Tennessee at Chattanooga

This work is supported by DOE and NSF (USA) NSERC (CANADA) CONACYT (MEXICO) BARC (INDIA)