

Ramsey Experiments using Neutron Beams

Florian Piegsa ETH Zürich – Institute for Particle Physics

ESS Science Symposium, Grenoble – March, 26th 2013

- Ramsey's method of separated oscillating fields
- Measurement of incoherent scattering lengths
- Neutron spin phase imaging
- Search for new light spin-1 bosons
- Conclusions for a pulsed spallation source

Ramsey's technique

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

magnetic and pseudomagnetic interaction

Incoherent Scattering Lengths

neutron scattering length

Deuteron *b*_i interesting for Effective Field Theories/Cosmology:

- input parameter for 3 nucleons interaction
- absence of Coulomb forces and Pauli blocking in the doublet channel
- big-bang nucleosynthesis, e.g. $d(d,n)^{3}He$, $d(p,\gamma)^{3}He$, $d(d,p)^{3}H$.

Other interesting nuclei: ³He, Xe, Hg, ...

effect of pseudomagnetic precession

polarised sample

Barychevsky et al., *JETP* 20 (1965) 704 Abragam et al., *PRL* 31 (1973) 776

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

nd-experiment $b_{i,d}$ – cryostat & target

*B*₀=2.5 ⁶LiF target holder 48 mm d-PS target 97%D, Ø 5 mm x 1.2 mm Polarisation achieved by **Dynamic Nuclear Polarisation** and measured using cw-NMR

Piegsa et al., NIM A **589** (2008) 318 v.d. Brandt et al., J. Phys. Conf. Ser. **150** (2009) 012024

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

nd-experiment $b_{i,d}$ – results & limitation

v.d. Brandt et al., NIM A 611 (2009) 231

Neutron Spin Phase Imaging

imaging of magnetic fields ...

... with iron powder and ...

* image of a 9 mm long cylindrical ferromagnetic steel rod placed in an external magn. field.

Piegsa et al., PRL 102 (2009) 145501

Piegsa – 26.03.2013 – ESS Science Symposium

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

imaging principle

NSPI at SANS-I (PSI)

imaging principle

Measure a set of images at different frequencies:

imaging principle

Measure a set of images at different frequencies:

Simultaneous "Attenuation" & "Spin phase" imaging !

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

magnetic field of a coil

thin ferromagnetic steel foils

thin ferromagnetic steel foils

Neutron spin phase imaging is a quantitative radiography method to image magnetic fields & samples.

Search for new light Bosons

Are there additional forces ???

new interaction – new exchange boson

In general a new force is described by a set of dimensionless coupling constants and its interaction range λ_c .

new scalar boson (spin 0)

new vector boson (spin 1)

new vector boson (spin 1)

Additionally a vector boson would mediate also spin-velocity interactions (Yukawa-like): $V_{\rm VA}^{\rm point}(r) = \frac{g_{\rm V}g_{\rm A}}{2\pi} \ \hbar c \ \sigma \cdot \frac{v}{c} \ \frac{e^{-r/\lambda_c}}{r}$ $V_{\rm AA}^{\rm point}(r) = \frac{g_{\rm A}^2}{16\pi} \ \frac{(\hbar c)^2}{mc^2} \ \sigma \cdot \left(\frac{v}{c} \times \frac{r}{r}\right) \ \left(\frac{1}{\lambda_c} + \frac{1}{r}\right) \ \frac{e^{-r/\lambda_c}}{r}$

v = relative velocity between source and probe particle

- r = distance between source and probe particle
- *m* = mass of probe particle
- σ = spin of probe particle

Dubrescu & Mocioiu, JHEP 11 (2006) 005

probe the exotic $g_A g_A$ -interaction (spin 1)

Search for axial-axial coupling:

- Use polarised neutrons as 'probe' and non-magnetic macroscopic bulk matter as 'source'
- Two beam-method helps to compensate for drifts (field, spin flippers, temperature, etc.).
- However, still measure with and without sample.

Piegsa & Pignol, Jour. Phys. Conf. Ser. 340 (2012) 012043

Ramsey setup at Narziss (PSI)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ramsey setup at Narziss (PSI)

obtained Ramsey resonance patterns

"full" Ramsey signal (about 2 hours / 90 kHz ≈ 3 mT) measuring time about 5 min sinusodial-fit: $\sigma_{\phi} \approx 1.4^{\circ}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

results

Piegsa & Pignol, PRL **108** (2012) 181801 Princeton: Vasilakis et al., PRL **103** (2009) 261801

Ramsey with a pulsed beam

- All presented experiments can be performed at a pulsed beam/source.
- In order to profit from the **velocity information/pulsed structure**, the RF fields of the $\pi/2$ -spin flip coils have to be amplitude-modulated in time:

- Imaging would be not so straight forward as one would need a triggered neutron camera – only one wavelength at a time.
- Pulsed spallation source allows for relatively easy separation of velocity dependent and independent effects ... !!! ???

neutron EDM experiment using a beam ???

- The main systematic problem in beam nEDM-experiments was the vxE effect.
- The *vxE*-effect can be be separated from the EDM-phase effect using the pulsed structure of a spallation source like the ESS:

neutron EDM experiment using a beam ???

	UCN ⁽¹⁾	Beam	Gain
Observation time	130 sec	0.1 sec (2)	~ 0.001
Electric field	10 kV/cm	50 - 100 kV/cm (3,4)	~ 5
Intensity	14000/240 s ~ 60/s	2.5 x 10 ⁶ / s	$\sqrt{40000}$

e.g. 10 cm² beam: 2.5 x 10⁵ / cm²s

(1) Baker et al., PRL **97** (2006) 131801 (UCN < 2.9x10⁻²⁶ecm)
(2) Baldo-Ceolin et al., Z. Phys. C **63** (1994) 409 (nnbar)

(3) Dress et al., PR D **15** (1977) 9 (beam < 3x10⁻²⁴ecm)
(4) Baumann et al., PR D **37** (1988) 3107 (n-charge)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thank you for your attention.

