Neutron-decay correlation measurements with polarized and pulsed beams

Tim Chupp University of Michigan

Outline

Polarization observables Polarization Polarimetry Polarimetry of unpolarized neutrons

Polarized neutron decay

$$\frac{d^{5}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} = G(E_{e}) \left(1 + a\frac{\vec{p}_{e} \cdot \vec{p}_{v}}{E_{e}E_{v}} + b\frac{m_{e}}{E_{e}} + A\underbrace{\langle \vec{\sigma}_{n} \rangle}_{E_{e}} \vec{p}_{e} + B\underbrace{\langle \vec{\sigma}_{n} \rangle}_{E_{v}} \vec{p}_{v} + D\underbrace{\langle \vec{\sigma}_{n} \rangle}_{E_{e}E_{v}} (\vec{p}_{e} \times \vec{p}_{v}) \right) E_{e}E_{v}$$

Asymmetry =
$$\frac{N_{+} - N_{-}}{N_{+} + N_{-}} = k(\int dE)\alpha P_{n}AF(1 - f_{b}) + A_{false}$$

 $\begin{vmatrix} & & & \\ &$

A New Limit on Time-Reversal-Invariance Violation in Beta Decay: Results of the emiT-II Experiment

T.E. Chupp, K.P. Coulter & R.L. Cooper *University of Michigan*

S.J. Freedman & B.K. Fujikawa University of California - Berkeley/ Lawrence Berkeley National Laboratory

G.L. Jones *Hamilton College*

A. Garcia University of Washington

H.P. Mumm, J.S. Nico, & A.K. Thompson *National Institute of Standards and Technology*

C. Trull & F.E. Wietfeldt *Tulane University*

J.F. Wilkerson University of North Carolina

BERKELEY LAB

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

NEW RESULT: $D = [-0.94 \pm 1.89(\text{STAT}) \pm 0.97(\text{SYS})] \times 10^{-4}$ Mumm et al.

 $\varphi_{AV} = 180.012 \pm 0.028$ $\frac{g_A}{g_V} = |\lambda| e^{i\varphi_{AV}}$

PRL 107 102301 (2011) PRC 86 35505(2012)

Work supported in part by NIST and grants from the DOE and NSF

Models:
$$D_T = \sum_{sources} D_{source}$$

 $\Gamma \propto \left| A_{pT} + A_{PT} + A_{pT} \right|^2 \sim \Gamma_{pT} + \frac{A_{pT}}{A_{pT}} \sin \varphi_{pT} + \frac{A_{pT}}{A_{pT}} \sin \varphi_{pT} + \dots$
EDM

Model	Contribution to D	Constrained by
СКМ	10-12	Mixing
$\theta_{\rm QCD}$	2x10 ⁻¹⁵	EDMs (n, ¹⁹⁹ Hg)
Left-right symmetry	10-7-10-5	W _L limits (B)+EDMs
Non-SM Fermions	10 ⁻⁷ - 10 ⁻⁵	Direct production+EDMs
Charged Higgs SUSY	10 ⁻⁷ -10 ⁻⁶	
4-fermion/leptoquark	<10-4	Ng/Tulin (nEDM)

 $D_{FSI} \sim 2x10^{-5}$

Relationship to EDM (4 quark operator) (Ng & Tulin: PRD 85 033001 '12)

nDecay

Relationship to EDM (4 quark operator) (Ng & Tulin: PRD 85 033001 '12) ONLY ONE nEDM contribution

EDM

Current Status

$$\frac{d^{5}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{v}} = G(E_{e})\left(1 + a\frac{\vec{p}_{e}\cdot\vec{p}_{v}}{E_{e}E_{v}} + b\frac{m_{e}}{E_{e}} + A\frac{\langle\vec{\sigma}_{n}\rangle\cdot\vec{p}_{e}}{E_{e}} + B\frac{\langle\vec{\sigma}_{n}\rangle\cdot\vec{p}_{v}}{E_{v}} + D\frac{\langle\vec{\sigma}_{n}\rangle\cdot\left(\vec{p}_{e}\times\vec{p}_{v}\right)}{E_{e}E_{v}}\right)$$

		% error	Ref	SM (tree level)	$\left \frac{1}{lpha} \right \partial lpha / \partial \lambda ight $
λ	-1.2701±0.0025	0.2	PDG		
а	-0.103±0.004	3.9	PDG	$\frac{1-\left \lambda\right ^2}{1+3\left \lambda\right ^2}$	2.8
A	-0.1176 ± 0.0011	0.7	PDG	$-2\frac{\left \lambda\right ^2 + \operatorname{Re}(\lambda)}{1 + 3\left \lambda\right ^2}$	3.2
В	0.9807 ± 0.0030	0.3	PDG	$+2\frac{ \lambda ^2 - \operatorname{Re}(\lambda)}{1 + 3 \lambda ^2}$	0.08
С	-0.2377 ± 0.0036	1.1	PERKEOII-B	$C = 4 \frac{\operatorname{Re}(\lambda)}{1+3 \lambda ^2}$	0.52
D	(-0.94 ± 2.12) x10 ⁻⁴	-	emiT-II	$2\frac{\mathrm{Im}(\lambda)}{1+3 \lambda ^2}$	
φ _{AV}	180.012±0.0028	-	same		

 $\label{eq:k=0.27484 for 0 \le E_p \le 750 eV} \\ C/k=-0.8649 \pm 0.0095 \\ A+B=0.8631 \pm 0.0032 \\ k(A+B)=0.2372 \pm 0.0009 \\ \end{tabular}$

$$\frac{1}{(1+3|\lambda|^2)} = \tau_n G_F^2 |V_{ud}|^2 \frac{m_e^5}{c^5} (1+\delta_R)$$

7

SM has two parameters: V_{ud} and $\lambda \ge 5$ Observables

Beyond SM Physics:

Scalar and Tensor Currents

$$A \approx +2 \frac{|\lambda|^2 - \operatorname{Re}(\lambda)}{1+3|\lambda|^2} + \frac{\operatorname{Op}_{p_e}}{p_e} \frac{(2|\lambda|^2 + \lambda)\operatorname{Im}(T) + \lambda\operatorname{Im}(S)}{1+3|\lambda|^2} \qquad S = \frac{C_s + C_s'}{C_v}$$

$$B \approx -2 \frac{|\lambda|^2 + \operatorname{Re}(\lambda)}{1+3|\lambda|^2} + \frac{m}{E_e} \frac{(2|\lambda|^2 + \lambda)\operatorname{Re}(T) + \lambda\operatorname{Re}(S)}{1+3|\lambda|^2} \qquad T = \frac{C_T + C_T'}{C_A}$$

Right Handed W

$$W_{L} = (W_{1}\cos\xi + W_{2}\sin\xi)$$

$$W_{R} = (-W_{1}\sin\xi + W_{2}\cos\xi)e^{i\varphi_{LR}}$$

$$A \approx A_{SM} \left(1 - 2\delta^{2} + \frac{-12\lambda^{3} + 6|\lambda|^{2} - 2}{\lambda - (1 + 3|\lambda|^{2})}\delta\xi - \frac{3\lambda}{(\lambda - 1)}\xi^{2}\right) \approx A_{SM} - (0.24\delta^{2} + 0.54\delta\xi + 0.20\xi^{2})$$

$$B \approx B_{SM} + \frac{2\lambda(\delta^{2} - \xi^{2}) - 3|\lambda|^{2}(\delta + \xi)^{2}}{1 + 3|\lambda|^{2}} \approx B_{SM} - (1.08\delta^{2} + 1.30\delta\xi + 0.22\xi^{2})$$

Proton Asymmetry vs E_e Schumann et al. PRL 100, 151801 (2008)

Summary of Motivations

- $A/C(E_p, E_e) LARGE$
- C = k(A+B) (+ corrections) ~ $4Re(\lambda)/(1+3|\lambda|^2)$ (SM)
- Use (A) C, $|V_{ud}|, \tau_n$ as a SM test
- Sensitive to Scalar, Tensor, RH currents
- Theory: Treiman (1948), Glück (1996), Gudkov (EFT)
- Corrections: calculable to <<10⁻³ (10⁻⁴) Ivanov arXiv:1212.0332)

Polarization

P/A	P _n (5Å)	T _n	P ² ρ	features	
PSM	98%	25%	0.24	Pn~ 1; static	
XSM	99.x%	10%	0.10	* *	
He (60%)	80%	30%	0.19	Flip P ₃ ; P ₃ varies	

Need < 0.1% measurment of $\langle P_n \rangle$, F

Crossed Supermirror (XSM) Kreuz et al.

³He spin filter: $n + {}^{3}He \rightarrow {}^{1}H + {}^{3}H$

³He: continuous polarization by Spin Exchange

Huge Progress with ³He (NIST-Wisc/ILL/UVa/Jlab...)

³He Polarizer Neutron-flux Limitations?

Sharma, Babcock, Soldner et al. show effect on P_{Rb}

$$P_{Rb} = \frac{\gamma_{opt}}{\gamma_{opt} + S\Gamma_A}$$
$$S_{Rb} = 10.8$$
$$S_K = 6$$

Requires increased laser power (e.g. few times) Double cell – E. Babcock

Cold Neutron Beam

Polarization Summary

- XSM vs ³He: TBD
- ³He provides $P_{\alpha}^{asymmetry}$ (Bowman and Penttila)
- Supermirror design for m=3+ guides needed
- Magnetic field accomodations for spin transport
- Nab estimates for C (0.1%): 5 days

Characterize Polarizer AND Flipper

³He and P_n test: n+p \longrightarrow d + γ (@LANSCE)

Spin Flipper

³He Spin Filter

Pulsed Beam Neutron Polarimetry

Pulsed Beam Neutron Polarimetry

Offsets/Backgrounds

Demonstrates understanding at 10⁻³ level (10⁻⁴ achieved)

Polarimetry Summary

- Use opaque 3He and pulsed/chopped beam: measure $P(v,\vec{r}), R(v,\vec{r})$
- Pulsed beam (SNS): measure continuously
- Chopped beam (NIST): monitor continuously calibrate monitor
- Neutron flux-³He issues not limiting
- Statistics not limiting
- Systematics: backgrounds (beta delayed neutrons), ³He AFP losses ~10⁻⁴ at LANSCE Should be ~constant vs tof at SNS
- LANSCE FP12 test beam available

AFP Flip ³He polarization:

$$R(v_n) = \frac{T_+ - T_-}{T_+ + T_-} = P_n \tanh(P_3 n_3 \sigma_a t_3)$$

Summary

- Interesting and important physics in A, B (C), D @ $<10^{-3}$
- D measured to $2x10^{-4}$
- ³He polarizer: 99.xx % P_n ; 10% transmission neutron beam effects
- 0.1% (0.01%) measurement of $\langle P_n \rangle$ spin flipper with ³He

