Superfluid-helium UCN sources: concepts for the ESS?

Oliver Zimmer

Institut Laue Langevin Grenoble

LPSC, 26 March 2013

Golub & Pendlebury, PL 53A (1975) 133

SNQ UCN source study

(Golub/Böning/Weber 1980)

Premise: cooling power @ 0.8 K

iv) Reaction rates in the curved portion of the cylindrical shell The volume element is $d^3V = 2 \cdot \pi \cdot R \cdot t \cdot dz$ where t is the thickness of the shell. The reaction rate is

$$\sum \int \phi(\vec{a}) \, d^3v = \sum t \, 2\pi R \int_{z_1}^{z_2} \frac{S_R}{4} \log \frac{1}{2} \left[\sqrt{a^4 + 2(1 - g^2)a^2 + (1 + g^2)^2} + a^2 + 1 - g^2 \right]$$
(22)

from equ. (10) where $\alpha = R/Z$. We wish to evaluate (22) for $g = R/Z = \alpha$, thus (22) becomes

$$= \sum t \frac{\pi S_{R}}{2} R^{2} \int_{Z_{4}}^{Z_{2}} \log \frac{1}{2} \left[\sqrt{\alpha^{4} + 2(1 - \alpha^{2})\alpha^{2} + (1 + \alpha^{2})^{2}} + 1 \right]$$

$$= \sum t \frac{\pi S_{R}}{2} R^{2} \int_{Z_{4}}^{Z_{2}} \log \frac{1}{2} \left[\sqrt{4\alpha^{2} + 1} + 1 \right]$$
(23)

iv) Summary of Heat Inputs .

The various contributions to the heating of the liquid Helium vessel discussed above are:

Fast neutrons	1.4 mW
neutron capture in Be	1.7 mW *
neutron capture in Bi filter	3.5 mW * UNY Shear first
neutron capture in D ₂ 0	oviper p
(with 17 cm Pb shield	9.0 mW (* ?)
on sides)	
Fast protons	100.0 mW
total	116.0 mW

* these contributions are proportional to the thermal flux coming through the Bismuth filter and are hence proportional to the UCN production rate.

+ many mW thermal radiation along UCN extraction guide (studied in our present "ex-pile" project)

SNQ in-pile UCN source study (Golub/Böning/Weber)

190 mW on He-II bath + tank (21 l)

$$T = 0.8 \text{ K} \rightarrow \tau = 300 \text{ s}$$

 $P = 1340 \text{ cm}^{-3}\text{s}^{-1}$, $\rho_{\text{UCN}} = 4 \times 10^5 \text{ cm}^{-3}$ (with cold source)

PNPI in-pile source project (Serebrov et al.)

19 W on He-II bath + tank (35 l)

$$T = 1.2 \text{ K} \rightarrow \tau = 20 \text{ s}$$

 $P = 2900 \text{ cm}^{-3}\text{s}^{-1}$ (10⁸ s⁻¹ in total), $\rho_{\text{UCN}} = 5.8 \times 10^4 \text{ cm}^{-3}$

Ex-pile, state-of-the-art cold neutron beam transport (*m*=2):

 $T < 0.7 \text{ K} \rightarrow \tau = \text{``many 100 s''}$ $P < 30 \text{ cm}^{-3}\text{s}^{-1}, \rho_{\text{UCN}} \rightarrow 10^4 \text{ cm}^{-3}$

Short history of our "ex-pile" helium UCN source development

Prototype converter (TU Munich >2003)

...installed at the research reactor FRM II in Munich (2006)

technical detail... superleak to filter ³He

compressed Al_2O_3 powder (50 nm)

...move to Grenoble and upgrade (\rightarrow SUN-1)

BeO ceramics (260 neV)

SUN-1 @ H172a

THE REAL PROPERTY IN COMPANY

...several months of fighting against leaks...

O. Z., F.M. Piegsa, S.N. Ivanov, PRL 107 (2011) 134801

Cyclic operation of the source

SUN-2 modular, high cooling power cryostat, ...first test @ white cold beam PF1b (2011)

Preparation of converter vessel

- Be-coated UCN vessel
- volume: 4 l (upgradable)
- Be entrance/exit windows
- choosable UCN extraction hole size

Schematics of converter vessel

UCN extraction from open converter

Highest UCN output with open converter: 6000 UCN/s through 2cm² hole @ 1.08K

UCN accumulation experiments

November 2012

SUN-2 assembly

5

XJT-AATIN

...last night before the reactor shutdown (8/12/2012):

Ex-pile opportunity: magnetic UCN reflector

Use of pulse structure of beam?

...maybe possible ex-pile:

- mean free path of 0.89 nm neutrons in He-II (1.25 K): *I* = 17 m
- pulse plateau length: t = 2.2 ms, neutron velocity: v = 450 ms⁻¹ $\rightarrow vt = 1$ m \rightarrow one pulse fits in a 0.5 m long 0.89 nm resonator
- time between pulses: T = 0.07 s
- time for 1/e decrease of 0.89 nm neutrons in He-II: T < I/v = 0.037 s
 - ightarrow every pulse can be used

Ex-pile UCN source:

- + no need for far transport of UCN
- + needs less powerful cryogenics
- + easy access to source for
 - study of converters and UCN extraction schemes
 - trouble shooting
- + space for bulky reflectors (magnetic or diffusive)
- + progress in guide technology \rightarrow more UCN
- cold neutron flux by a factor 100 lower than in-pile
 - \rightarrow UCN current lower by same factor
 - \rightarrow UCN density lower by factor 10 50
- \rightarrow ex-pile source is at least a good precursor of an in-pile source \rightarrow in-pile source might be best choice for high UCN flux experiments

Potential opportunities for ESS:

- huge feeding guide for ex-pile UCN source
- optimization of cold beam spectrum with colder pre-moderator
- design of optimized in-pile UCN source

