Fundamental Neutron Properties (A Theory Perspective)

William J. Marciano March 25, 2013 Grenoble, France

<u>Outline</u>

- 1. τ_n , g_A , V_{ud} & <u>CKM Unitarity</u> (Future Goals: Theory & Experiment) <u>Main Topic of this talk</u>
- 2. Neutron Electric Dipole Moment P & T Viol. (A Higgs Boson->YY Connection?)
- 3. Neutron-Antineutron Oscillations |ΔB|=2 (Are Neutrons Majorana Particles?) Dark Matter may also be Majorana! (Example)
- 4. Outlook and Conclusion

Some References

Refs: <u>A. Sirlin RMP 50, 573 (1978)</u> + earlier work WJM & A. Sirlin, PRL <u>56</u>, 22 (1986); ibid <u>96</u>, 032002 (2006) A. Czarnecki, WJM, A. Sirlin, PRD <u>70</u>, 093006 (2004); <u>The classic</u>: D. Wilkinson, NP A377, 474 (1982).

Reviews: "The neutron. Its properties and basic interactions" Hartmut Abele Prog.Part.Nucl.Phys. 60 (2008) 1. *"The Neutron and Its Role in Cosmology and Particle Physics"* Dirk Dubbers, Michael G. Schmidt RMP. 83 (2011) 1111. "The Neutron Lifetime" Fred E. Wietfeldt, Geoffrey Greene RMP. 83 (2011) 1173.

1. τ_n , \mathbf{g}_A , V_{ud} & <u>CKM Unitarity</u>

 $SU(2)_L xU(1)_Y$ Standard Model Electroweak Loop Corrections to $\mu \rightarrow ev_e v_\mu$ and $n \rightarrow pev_e$ *both Infinite* but renormalized using $(G_F^0 \rightarrow G_\mu)$ Quark mixing divergences absorbed in $V_{ud}^0 \rightarrow V_{ud}$ maintaining Unitarity

The CKM Quark Mixing Matrix:

 $\begin{cases} V_{ud} V_{us} V_{ub} \\ V_{cd} V_{cs} V_{cb} \\ V_{cd} V_{cs} V_{cb} \\ V_{td} V_{ts} V_{tb} \end{bmatrix}$ $\underbrace{ Unitarity}_{V_{ud}} |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \\ |V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 = 1 \quad \text{etc.}$

Any "<u>Apparent</u>" Deviation from 1 Implies "New Physics" at the tree or quantum loop level

 $\frac{\text{Muon Decay}}{\text{Neutron Decay}} \Gamma_0(\mu \rightarrow evv) = F(m_e^2/m_{\mu}^2) G_F^0 m_{\mu}^5/192\pi^3 = 1/\tau_{\mu}^0$ $\frac{\text{Neutron Decay}}{\Gamma_0(n \rightarrow pev)} = f_F^0 G_F^0 |V_{ud}^0|^2 m_e^5 (1+3g_A^2)/2\pi^3 = 1/\tau_n^0$

F(x)=1-8x+8x³-x⁴-12x²Inx Phase Space Factor <u>f=1.6887</u> phase space factor, including Fermi function proton recoil, finite nucleon size... Uncertainty O(few x10⁻⁵) <u>Other Effects</u>: Weak Magnetism, <u>Induced Pseudoscalar</u> etc. negligible

 g_A and τ_n important for: *CKM Unitarity*, solar neutrino flux, reactor neutrino flux, *primordial abundances* ΔN_v , spin content of proton, Goldberger-Treiman/<u>Muon Capture</u>, Bjorken Sum Rule, lattice benchmark $g_A \& g_p$...

Must be precisely determined!

±0.01% Outstanding/Appropriate Goals for τ_n and g_A^2

Muon Capture $\mu p \rightarrow v_{\mu} n$ Example

• MuCap(2012) $\Lambda_{s}(\mu p \rightarrow v_{\mu} n) = 714.9 \pm 7.4 s^{-1} \pm 1\%!$

Extract induced pseudoscalar coupling g_p using $g_A^{PDG}=1.2701\pm0.0025$ (probably low by about 2 sigma) Recent $g_A = 1.2755(13)$ Perkeo II

 $g_p^{exp}=8.06\pm0.48_{exp}\pm0.19_{RC}\pm0.15_{gA}$ (Perkeo II \rightarrow 8.37) $g_p^{th}=8.26\pm0.23$ ChPT Future Lattice Improvement?

Future $\Delta RC \rightarrow \Delta g_p \pm 0.05$ (or smaller?) $\Delta g_A \rightarrow \Delta g_p \pm 0.01!$ Future Exp. \pm ? Future Lattice $g_p \pm$? Is a future precision ($\pm 0.1\%$) "New Physics" Test Possible?

Electroweak Radiative Corrections to Muon Decay

Virtual One Loop Corrections + Inclusive Bremsstrahlung Absorb Ultraviolet divergences and some <u>finite parts</u> in $G_F^0=g_0^2/4\sqrt{2m_{W0}^2} \rightarrow G_\mu$ $\tau_u^{-1}=\Gamma(\mu^+\rightarrow e^+\nu_e\nu_u(\gamma))=F(m_e^2/m_u^2)G_u^2m_u^5[1+RC]/192\pi^3$

RC =α/2π(25/4-π²)(1+α/π[2/3ln(m_µ/m_e)-3.7)...] Fermi Th. Defines G_µ Other SM and "New Physics" radiative corrections absorbed into G_µ. Eg. Top Mass, Higgs Mass, Technicolor, Susy,W*...

MuLAN experiment at PSI (Complete)

World Ave. τ_{u+} =2.1969803(22)x10⁻⁶sec 1ppm!

Most precise lifetime ever measured gives:

G_µ=1.1663787(6)x10⁻⁵GeV⁻² precise & important

Loop and Tree Level Corrections to Muon Decay ñ Technicolor SUSY Rosal

Electroweak Radiative Corrections to Neutron Beta Decay

Include Virtual Corrections + Inclusive Bremsstrahlung **Normalize using G**_µ from the muon lifetime Absorbs Ultraviolet Divergences & some finite parts $1/\tau_n = fG_{\mu}^2 |V_{ud}|^2 m_e^5 (1+3g_A^2) (1+RC)/2\pi^3$ f=1.6887 (Includes Fermi Function etc. not Rad. Corr.) RC calculated for (Conserved) Vector Current since it is not renormalized by strong interaction at zero momentum transfer. <u>Same RC used to define g_A</u>: [A(g_A)=(1.001)A^{exp}]

 $RC = \alpha/2\pi [\langle g(E_m) \rangle + 3ln(m_z/m_p) + ln(m_z/m_A) + 2C + A_{QCD}]$ + higher order $O(\alpha/\pi)^2$

g(E_e)=Universal <u>Sirlin Function</u> from Vector Current A. Sirlin, PRD 164, 1767 (1967). $\alpha/2\pi < g(E_m = 1.292579 MeV) >= 0.015056$ long distance loops and brem. averaged over the decay spectrum. Independent of Strong Int. up to $O(E_e/m_P)$ $g(E_e)$ also applies to Nuclei A. Sirlin (1967) Uncertainty < 10⁻⁵

 $3\alpha/2\pi \ln(m_z/m_p)$ short-distance (Vector) log <u>not</u> renormalized by strong int. $[\alpha/2\pi[\ln(m_z/m_A)+2C+A_{QCD}]$ Induced by axial-current loop Includes hadronic uncertainty $m_A=1.2GeV$ long/short distance matching scale (<u>factor 2 m_A unc.</u>) C=0.8g_A(\mu_N+\mu_P)=0.891 (long distance γW Box diagram) WJM&A.Sirlin(1986) $A_{QCD}=-\alpha_s/\pi(\ln(m_z/m_A)+cons)=-0.34$ QCD Correction

 $[\alpha/\pi \ln(m_Z/m)]^n$ leading logs summed via renormalization group, <u>(+0.0016)</u> Next to leading short distance logs ~ -<u>0.0001</u>, and $-\alpha^2 \ln(m_p/m_e) = -0.00043$ estimated (for neutron decay) **Czarnecki, WJM, Sirlin (2004) 1+RC=<u>1.0390(8)</u> main unc. from m_A matching short and long distance \gammaW (VA) Box. Unc^{*}. ±8x10⁻⁴ vs future (±0.1sec goal) \tau_n ±1.1x10⁻⁴ goal.**

* Note, unc. cancels in neutron vs nuclear beta decays eg V_{ud}

<u>yW Box Diagram</u>

Weak Axial-Vector Induced Radiative Corrections AV Loop -> V -> Superallowed B-decays $\begin{array}{c} & & \\ & &$ $RC = \frac{\alpha}{4\pi} \int_{0}^{\infty} dQ^{2} \frac{m_{W}^{2}}{Q^{2} + m_{W}^{2}} F(Q^{2})$ Large $Q^2 F(Q^2) = \frac{1}{Q^2} \left[1 - \frac{\alpha_s(Q^2)}{2} + \dots + O(\frac{1}{Q^4}) \right]$ Small Q2 -> Nucleon Form Factors $\begin{array}{c} & & \\ & &$ $\frac{\alpha}{2\pi} \left\{ l_m \frac{m_a}{m_A} + R_g + 2C \right\} \quad m_a = matching \\ \overline{\alpha}CD \quad Long Distance}$

2006 Improvement WJM & A. Sirlin

1.) Use large N_{QCD} Interpolator to connect long-short distances 2.) Relate neutron beta decay to Bjorken Sum Rule (N_F=3) $1-\alpha_s/\pi \rightarrow 1-\alpha_s(Q^2)/\pi-3.583(\alpha_s(Q^2)/\pi)^2-20.212(\alpha_s(Q^2)/\pi)^3$ -175.7 ($\alpha_s(Q^2)/\pi$)⁴ (Baikov,Chetyrkin and Kuhn) Negligible Effect

The extra QCD corrections lead to a matching between short and long distance corrections at about Q²=(0.8GeV)² Very little change in size of RC, but uncertainties reduced by a factor of 2 (perhaps 3)!

(Both Prescriptions Agree)

1+RC= 1.0390(8)→<u>**1.03886(39)**</u> for Neutron Beta Decay Reduction by $1.4x10^{-4}$ (Same for $0^+ \rightarrow 0^+$ beta decays)

Unc. Reduced to $\pm 3.9 \times 10^{-4}$ (about $3 \times \tau_n$ goal).

RC Error Budget

 Neglected Two Loop Effects: ±0.0001 conservative
 Long Distance α/πC~α/π (0.75g_A(μ_N+μ_P))=0.0020 Assumed Uncertainty ±10%→±0.0002 reasonable?
 Long-Short Distance Loop Matching: 0.8GeV<Q<1.5GeV ±100% → ±0.0003 conservative

Total RC Error $\pm 0.00038 \rightarrow \Delta V_{ud} = \pm 0.00019$

More Aggressive Analysis $\rightarrow \Delta V_{ud}$ =±0.00013 (1/2 conservative)

→ only about $2x\tau_n$ goal of ±0.1sec. (well matched)

Superallowed ($0^+ \rightarrow 0^+$) Beta Decays & V_{ud}

RC same as in Neutron Decay but with <g(E_m)> averaged Nuclear decay spectrum, C modified by Nucleon-Nucleon Interactions and
 +Z α²In(m_p/m_e) corrections (opposite sign from neutron)

ft= $|V_{ud}|^2$ (2984.5s)(1+RC)(1+NP corr.)

Nuclear Physics (NP) isospin breaking effects (Hardy & Towner Calculations: See later critique)

ft values + RC for 13 precisely measured nuclei found to be consistent with CVC: Average $\rightarrow V_{ud}$

Superallowed Nuclear Beta Decays

RC Uncertainty-Same as Neutron Decay

Nuclear Unc. - Significantly Reduced (2006-08)

Nuclear Coulomb Corrections Improved

 $|V_{ud}| = 0.97425(11)_{Nuc}(19)_{RC}$ (2008 Hardy and Towner Update)

(0.97418((13)(14)(19) in PDG08) (0.97377(11)(15)(19) in PDG06) (0.97340(80) in 2004) Factor of 3 worse The Kaon Revolution of 2004-2005

(Starting with BNL E865) +FNAL, Frascati & CERN $BR(K \rightarrow \pi ev)$ increased by $\approx 6\%$! All Major K_L BRs Changed! ϵ_{K} changed by 3.7 σ !

Now Based on: $\Gamma(K \rightarrow \pi l \nu)_{exp} \& \Gamma(K \rightarrow \mu \nu) / \Gamma(\pi \rightarrow \mu \nu)_{exp} + Lattice Matrix Elements f_{+}(0)=0.960(5) \& f_{K}/f_{\pi}=1.193(6)$

 $\frac{2010 \text{ Flavianet Analysis Currently}}{|V_{us}|=0.2253(13)} \text{ from } K \rightarrow \pi l \nu \quad \text{Vector}$ $|V_{us}|=0.2252(13) \text{ from } K \rightarrow \mu \nu \quad \text{Axial-Vector}$ $|V_{us}|=0.2253(9) \text{ Kaon Average (was ~0.220 \text{ pre } 2004)}$

(Watch for lattice updates)

CURRENT STATUS of CKM Unitarity

$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9999(4)_{Vud}(4)_{Vus}$ =0.9999(6)

Outstanding Agreement With Unitarity

Confirms CVC & SM Radiative Corrections: $2\alpha \ln(m_z/m_p)/\pi+... \approx +3.6\%$ at 60 sigma level! Naively Fits m_z=90(7)GeV vs 91.1875GeV (Direct)

Comparison of G_{μ} with other measurements (normalization) constrains or unveils "New Physics"

New Physics Constraints-Implications:

Exotic Muon Decays, W*bosons, SUSY, Technicolor,

Z' Bosons, H[±], Heavy Quark/Lepton Mixing...

• Exotic Muon Decays:

 $\mu \rightarrow e v_e v_\mu$ wrong neutrinos! BR <0.001 (95%CL)

Potential Background Uncertainty For Neutrino Oscillations At Neutrino Factory

<u>Heavy Quark Mixing</u> (e.g. E6 D_L singlets)
 V_{uD}≤0.03 Similar Heavy Lepton Constraint
 Seems unlikely, since V_{ub}=0.003

<u>W* Excited KK Bosons</u> or sequential W' (different $\mu \& \beta$) 4(m_W/m_{W*})²=0.0001(6), m_{W*}>6TeV? Unless Cancellation with muon decay? (1TeV extra dim. Unlikely?) LHC sequential W'?

<u>2 Higgs Doublets→Charged Higgs</u> H[±]
 m_{H±}≥5.6tanβ (From K→μν)

Superallowed Beta Decay Issue

 Isospin Breaking Coulomb Corrections of Hardy and Towner <u>questioned</u> by: <u>G. Miller & A. Schwenk</u>

N. Auerbach

H. Liang et al.

Hardy and Towner (1- $\delta_{\rm C}$) correction increases $V_{\rm ud}$

 $\delta_c \sim 0.2-1.6\%$ Correction

Recent Claims δ_c is smaller due to nuclear radial excitations smaller V_{ud} =0.97425 \rightarrow 0.9730 (Liang, Giai, Meng) $|V_{ud}|^2+|V_{us}|^2+|V_{ub}|^2$ reduced to (roughly) <u>0.9975?</u> <u>Unitarity Lost?</u>

<u>Issue needs "complete" quantitative resolution</u> (Experimentally Addressed by Hardy & Towner)

Neutron Decay Master Relations

1)
$$|V_{ud}|^2 = \frac{4908.7(1.9)sec}{\tau_n(1+3g_A^2)}$$

2) $\tau_n = \frac{4908.7(1.9)sec}{|V_{ud}|^2 (1+3g_A^2)}$

Unc. Radiative Corrections Same as in Nuclear β Decay

Radiative Corrections Cancel!

3) $(1+3g_A^2) = \frac{4908.7(1.9)sec}{|V_{ud}|^2 \tau_n}$

Radiative Corrections Cancel!

Current $\Delta |V_{ud}|^2 / |V_{ud}|^2 = \pm 0.02\%$ (NP) $\pm 0.04\%$ (RC) Superallowed β

 $\Delta \tau_{n/\tau_n} = \pm 0.12\%$ $\tau_n^{PDG} = 880.1(1.1) \text{sec.}$

 $\Delta g_A^2/g_A^2 \approx \pm 0.20\%$ Recent $g_A = 1.2755(13)$ Perkeo II

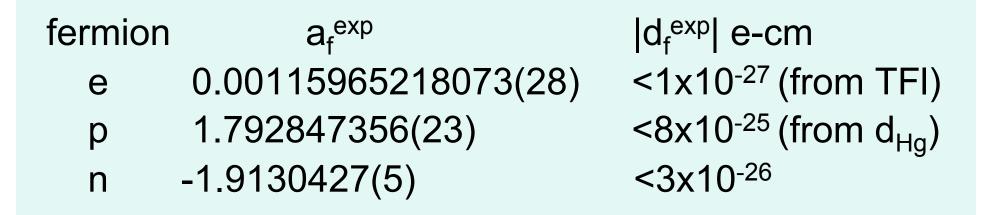
±0.01% Outstanding/Appropriate Goals for τ_n and g_A^2

Neutron Decay (n→pev) & V_{ud}

 $|V_{ud}|^2 = 4908.7(1.9)sec$ Master Relation $\tau_n(1+3g_A^2)$ Measure τ_n and $g_A = G_A/G_V$ (decay asymmetries)

2008 <u>PDG</u> τ_n^{ave} =885.7(8)sec, g_A^{ave} =1.2695(29) → |V_{ud}|^{ave}=0.9746(4) $_{\tau n}$ (18)_{gA}(2)_{RC} reasonable but ...

2012 $\tau_n^{PDG} \approx \underline{880.1(1.1)} \sec? \& g_A \approx \underline{1.2755(13)}$ Perkeo II $\rightarrow |V_{ud}| = \underline{0.9739(6)}_{\tau n}(8)_{gA}(2)_{RC}$ Agrees with superallowed! $0^+ \rightarrow 0^+$ Nuclear Beta $V_{ud} = 0.97425(22)$ (Are $\tau_n \& g_A$ both shifting?) History $g_A = 1.18 \rightarrow 1.23 \rightarrow 1.25 \rightarrow 1.26 \rightarrow 1.27 \rightarrow 1.275?$ Many New $\tau_n \& g_A$ Experiments Planned


2. Neutron Electric Dipole Moment P & T Viol.

<u>1950 Purcell & Ramsey</u> Speculate P may be violated Begin search for neutron edm T (CP) violation also needed for edms! P & T Violation → EDMs for all particles with spin CKM CP Violation → unobservably small edms

EDMs: Window to Early Universe CP Violation!

<u>"New Physics" Source of CP Violation Needed!</u> <u>Supersymmetry Leading Candidate</u> (Not observed at LHC yet! Some Tension!)

Some Current Dipole Moments

electron & neutron bounds roughly comparable (Very Powerful SUSY Constraints)

Griffith, Swallows, Loftus, Romalis, Heckel & Fortson PRL102, 101601 (2009)

|d_{Hg}|<3.1x10⁻²⁹e-cm <u>Further factor 3-5 Hg Improvement Expected!</u>

Great Future Expectations

- $d_n \rightarrow 10^{-27}$ -10⁻²⁹ e-cm Neutron Spallation/Reactor Sources
- $d_e \rightarrow 10^{-29}$ e-cm or better!
- $d_p \& d_D \rightarrow 10^{-28} 10^{-29} ecm$ Storage Ring Proposal (BNL/COSY)

Pave the way for a new generation of storage ring experiments d_p , d_D , $d(^{3}He)$, d(radioactive nuclei), d_{μ}

Several orders of magnitude improvement expected

Higgs (125-126GeV) Discovery & Properties

- ATLAS and CMS Experiments have strong evidence for a
- Higgs like (spin 0) new particle with mass 125-126GeV
 <u>Expected Higgs SM Properties</u>

H Decay Channel	Branching Ratio
$b\overline{b}$	0.578
WW^*	0.215
gg	0.086
$ au^+ au^-$	0.063
$c\bar{c}$	0.029
ZZ^*	0.026
$\gamma\gamma$	$2.3 imes10^{-3}$
$Z\gamma$	$1.5 imes10^{-3}$
$H \to ZZ^* \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$	$1.2 imes10^{-4}$
$H ightarrow ZZ^* ightarrow \ell^+ \ell^- u ar u$	$3.6 imes10^{-4}$

- <u>5 sigma SM evidence/experiment presented (July 4, 2012)</u>
 > 1,000,000 H already produced at the LHC! *gluon* + *gluon* → H through top quark loop

 H→γγ ≈ ATLAS <u>1.65 x SM Expectation (2σ)</u>

 H→ZZ*(virtual)→4 leptons

 H→WW*→4 leptons (includes Neutrinos)
 - $H \rightarrow \tau^+ \tau^-$ coming into SM agreement
 - $H \rightarrow bb$ (too much background for now)

Early fluctuations?

Other decays e, u, d expected to be unobservabley small

FNAL Tevatron strong hints of HW &HZ (3 sigma) with H→bb (as expected or higher)

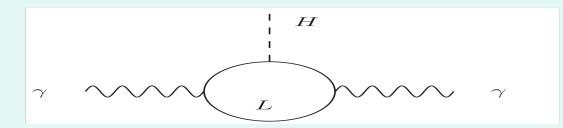
<u>Vector-like Heavy Leptons Dark Variant</u> DavoudiasI, Lee &WJM

• Example: A Possible Dark Sector

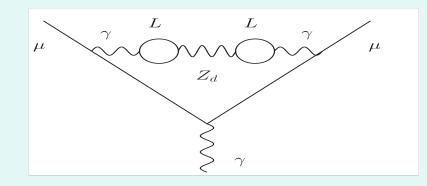
Two Left Handed Doublets $(N_i^0, E_i^-))_L$ i=1,2

Two Right-Handed Doublets (N_i⁰, E_i⁻)_R

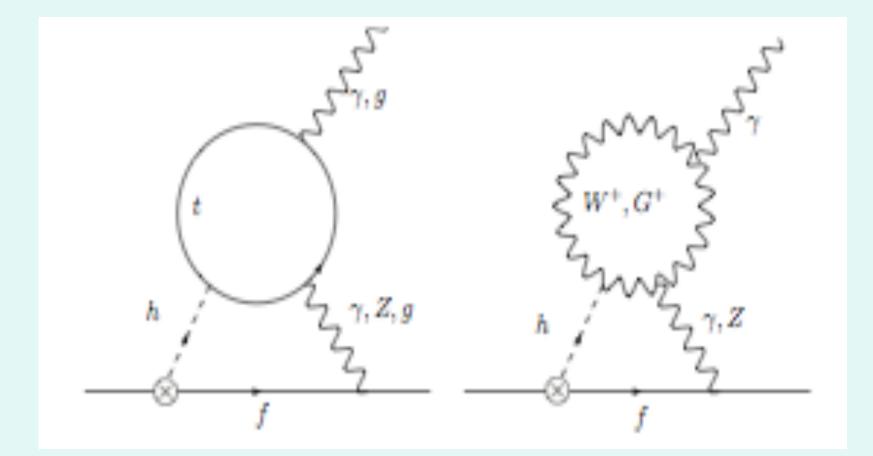
Dark Charges ±1


Four Left Handed Singlets N_{jL} , E_{jL} j=3,4

Four Right Handed Singlets N_{jR}, E_{jR} Dark Charges ±1


<u>Gauge Invariant Mass Terms</u> + Higgs Couplings \rightarrow Mixing All interactions vector-like under SU(2)_LxU(1)_YxU(1)_d

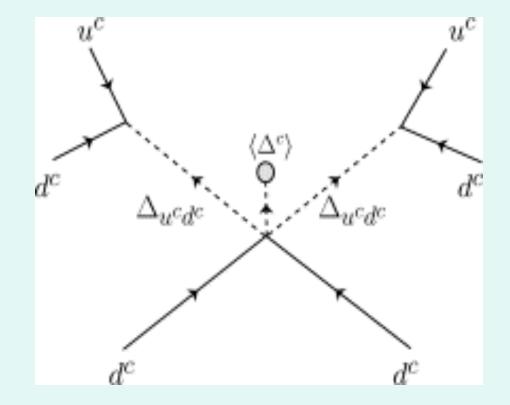
4 Charged & 3 Neutral Leptons Unstable Lightest Neutral: Potential Stable Dark Matter?


Charged Leptons: $H \rightarrow \gamma \gamma$ Loops (sign change)

Increase Br($H \rightarrow \gamma \gamma$) by factor ≈ 1.5 Could Violate CP! (M. Voloshin) induce edms! (McKeen, Pospelov, Ritz) Also give rise to γ -Z kinetic mixing If g $\approx e \rightarrow \epsilon \approx \alpha/2\pi \approx 10-3$ solves g -2 problem for 20MeV<m <50MeV (Experimental Range) Zd

<u>2 loop dipole moment sources</u>: McKeen, Pospelov, Ritz earlier Huber, Pospelov, Ritz

a_f vs d_f (very roughly)


 Two loop Higgs contribution: a_µ(H)≈fewx10⁻¹¹ a_e(H)≈5x10⁻¹⁶

<u>Unobservably Small!</u>

Two Loop Higgs contribution: $d_e(H) \sim 10^{-26} \sin \phi e - cm$ $|d_n(H)| \approx |d_p(H)| \sim 5 \times 10^{-26} \sin \phi e - cm$

Already d_e bound implies $\sin\phi \le 0.1$ (smaller?) <u>CP violation in $H \rightarrow \gamma\gamma$ </u> $\sin^2\phi \le 0.01$ Unlikely to be observable, but edm experiments can Explore down to $\sin\phi \approx O(10^{-3})!$ <u>Unique!</u>

3. Neutron-Antineutron Oscillations |ΔB|=2 see Babu & Mohapatra Papers

- New (Scalar) Interactions quark → antiquark
- Color Sextets or Triplets Fractionally Charged
- Masses ~ 1-2TeV Look like dijets at the LHC
- Give rise to neutron-antineutron osc. $T_{nn} \sim 10^8 10^9$ sec Neutron and antineutron are <u>**not**</u> mass eigenstates!
- m_n δm → $|n_{\pm}\rangle = (|neutron\rangle \pm |antineutron\rangle)/\sqrt{2}$ δm m_n m₊ = m_n±δm δm<10⁻²¹eV!

[n_±> are Majorana states! B=0, neutral, no dipole mom. No vector interactions etc.

Is the neutron a Majorana state?

Find neutron-antineutron Oscillations (Analog of $\Delta L=2$ Neutrinoless Double beta decay)

Is Dark Matter a Majorana Fermion?

 Dark Matter Candidate Lightest Neutral Lepton Member of Dark Sector N (≥100GeV) Wimp Lepton Number Violation δm≈O(50MeV)!
 Mass Diagonalization → N_± Majorana States
 N_⊥ is stable dark matter (Vector Interactions with ordinary matter suppressed!)
 Makes N_⊥ difficult to observe in laboratory

4. Outlook and Conclusion

- <u>Current Exps & Th:</u> |V_{ud}|²+|V_{us}|²+|V_{ub}|²=0.9999(4)_{Vud}(4)_{Vus} Great Unitarity Test & Sucess→ No New Physics! Nuclear Isospin Breaking? Needs Further Resolution Radiative Corrections Stable <u>(Unchallenged!)</u>
- 2) <u>Neutron Decay:</u> $|V_{ud}| = [4908.7(1.9)s/\tau_n(1+3g_A^2)]^{1/2}$ <u>clean & precise</u> Neutron Lifetime Controversy (6 σ discrepancies) 2010 $\tau_n^{PDG} = 885.7(8)s$ vs $\tau_n = 878.5(8)s$ Needs Resolution g_A larger? Perkeo Ave. 1.2755(13) vs 2012 $g_A^{PDG} = 1.2701(25)$ Larger g_A & smaller $\tau_n \rightarrow$ Unitarity, solar neutrino flux, primordial nuclear abundances, proton spin, Goldberger-Treiman/Muon Capture, Bjorken Sum Rule, lattice calculation benchmark...

<u>Goals</u>

 Extraction of g_A from τ_n &V_{ud} (nuclear) independent of radiative corrections unc!

 τ_{n} to ±0.1 sec + $|V_{ud}| = 0.97425(11)_{Nuc} \rightarrow \Delta g_{A}$ to ±0.0001!

2) V_{ud} comparison of neutron and nuclear beta decays ($|V_{ud}| = \underline{0.97425}(11)_{Nuc}(19)_{RC}$) suggests τ_n should be measured to $\pm 0.1 \sec \rightarrow \Delta V_{ud} \pm 0.000055!$

±0.01% Outstanding/Appropriate Goals for τ_n and g_A^2

Further Outlook

EDMs may soon be discovered: $d_e, d_n, d_p \dots d_D$ Magnitudes of $\approx 10^{-27}$ - 10^{-28} expected for Baryogenesis Atomic, Neutron, <u>Storage Ring</u> (All should be pursued)

CP violation in $H \rightarrow \gamma \gamma$ (Contemporary topic) Uniquely explored by 2 loop edms! May be our only window to Hee, Huu and Hdd couplings Guided by experiment: $H \rightarrow \gamma \gamma$ Future Updates Anxiously Anticipated!

In the end, the Higgs may be central to our existence and the matter dominated universe!

Neutron-Antineutron Oscillations

- Very interesting longshot (limited sensitivity 1-2TeV)
- If seen → Neutrons are Majorana Fermions! Baryon Number is violated! Should be pursued as far as possible T_{nn}>10⁹sec

Similar Physics may imply: Dark Matter Majorana!

You can't discover if you don't look