

FACULTÉ DES SCIENCES

Michaël Sarrazin Research Center in Physics of Matter and Radiation University of Namur - Belgium

ESS Science Symposium on Particle Physics at Long-Pulse Spallation Sources 25-27 March 2013 1/23

Context: Braneworld, a product from ToE attempts

Our world as a sheet embeded in a hyperspace: An « old » and rich idea !

Context: Braneworld, a product from ToE attempts

Our world as a sheet embeded in a hyperspace: An « old » and rich idea !

- \Rightarrow A productive topic with many published works
- \Rightarrow Lead to attractive solutions for Dark Matter, Hierarchy, ...

But, are extra dimensions and/or branes

a <u>real</u> viable track for physics?

⇒ Need for prompt experimental evidences of extra dimensions or braneworlds!

Prospecting for braneworld phenomenology: One-brane system

- <u>High Energy Physics</u>: KK states at LHC

-<u>Low Energy Physics</u>: Deviations of Newton Law with gravitation metrology

Prospecting for braneworld phenomenology: Two-brane system

As for one-brane + many new effects: *M. Sarrazin, F. Petit, Eur. Phys. J. C* **72** (2012) 2230

- Photon-hidden photon kinetic mixing See A. Ringwald, S. Abel, ...

- Fermion-hidden fermion mass mixing See Z. Berezhiani, ...

- Fermion-hidden fermion geometrical mixing

Describing the effects of interactions between two branes

 \Rightarrow At low energy, any multidimensional setup with two branes can be described by a two-sheeted spacetime in the formalism of the noncommutative geometry. *M. Sarrazin, F. Petit, Phys. Rev. D* **81**, 035014 (2010)

 \Rightarrow A tool for a model-independent phenomenology of braneworlds!

With $g = (1/\xi) \exp(-d/\xi)$ in the simplest approach

Describing the effects of interactions between two branes

 \Rightarrow At low energy, any multidimensional setup with two branes can be described by a two-sheeted spacetime in the formalism of the noncommutative geometry. *M. Sarrazin, F. Petit, Phys. Rev. D* **81**, 035014 (2010)

 \Rightarrow A tool for a model-independent phenomenology of braneworlds!

 \Rightarrow Two-brane Dirac equation:

$$(i \not\!\!D_A - M) \Psi = \begin{pmatrix} i \gamma^{\mu} (\partial_{\mu} + i q A^+_{\mu}) - m & i g \gamma^5 - m_c + i \gamma^5 \Upsilon \\ i g \gamma^5 - m_c^* + i \gamma^5 \bar{\Upsilon} & i \gamma^{\mu} (\partial_{\mu} + i q A^-_{\mu}) - m \end{pmatrix} \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} = 0.$$

+ E.M. terms

- Contains: Photon-hidden photon kinetic mixing
 - Fermion-hidden fermion mass mixing
 - Fermion-hidden fermion geometrical mixing

Describing the effects of interactions between two branes

 \Rightarrow At low energy, any multidimensional setup with two branes can be described by a two-sheeted spacetime in the formalism of the noncommutative geometry. *M. Sarrazin, F. Petit, Phys. Rev. D* **81**, 035014 (2010)

 \Rightarrow A tool for a model-independent phenomenology of braneworlds!

 \Rightarrow Two-brane Dirac equation:

$$(i \not \!\!\!D_A - M) \Psi = \begin{pmatrix} i \gamma^{\mu} (\partial_{\mu} + i q A^+_{\mu}) - m & i g \gamma^5 - m_c + i \gamma^5 \Upsilon \\ i g \gamma^5 - m_c^* + i \gamma^5 \bar{\Upsilon} & i \gamma^{\mu} (\partial_{\mu} + i q A^-_{\mu}) - m \end{pmatrix} \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} = 0.$$

+ *E.M.* terms

Contains:

Dominant effect relatively to the two others

- Fermion-hidden fermion geometrical mixing

Why two-brane physics is so interesting?

- \Rightarrow Because it allows low-energy experiments to probe a new physics invisible in colliders !
- Roughly speaking brane thickness ξ is probed in colliders at energy E = 1 / ξ
- In two-brane physics, the relevant parameter is: g $(1/\xi) \exp(-d/\xi)$

Why two-brane physics is so interesting?

- \Rightarrow Because it allows low-energy experiments to probe a new physics invisible in colliders !
- Roughly speaking brane thickness ξ is probed in colliders at energy E = 1 / ξ
- In two-brane physics, the relevant parameter is: g $(1/\xi) \exp(-d/\xi)$
 - For branes at TeV scale. For instance: $d \approx 50 \xi$ then $g \approx 10^{-3} \text{ m}^{-1}$
 - \Rightarrow New physics at LHC, but also at ILL or ESS

Why two-brane physics is so interesting?

- \Rightarrow Because it allows low-energy experiments to probe a new physics invisible in colliders !
- Roughly speaking brane thickness ξ is probed in colliders at energy E = 1 / ξ
- In two-brane physics, the relevant parameter is: g $(1/\xi) \exp(-d/\xi)$
 - For branes at TeV scale. For instance: $d \approx 50 \xi$ then $g \approx 10^{-3} \text{ m}^{-1}$
 - \Rightarrow New physics at LHC, but also at ILL or ESS
 - But what if we get branes at Planck scale? e.g. if d \approx 87 ξ then g \approx 10⁻³ m⁻¹!
 - \Rightarrow New physics at ILL or ESS but not in colliders !

A two-brane Pauli equation

Rabi oscillations between branes: Matter swapping effect

- A neutron undergoes gravitational potentials V in each brane + and -
- Under the influence of a magnetic vector potential, the neutron presents Rabi oscillations between both branes

$$P = \frac{4\Omega^2}{\eta^2 + 4\Omega^2} \sin^2\left((1/2)\sqrt{\eta^2 + 4\Omega^2}t\right)$$

with
$$\Omega = (1/2) g g_s \mu A_{amb} / \hbar$$
 and $\eta = (V_+ - V_-) / \hbar$

- Spin state modification in the second brane: unobservable effect!

Rabi oscillations between branes: Matter swapping effect

- A neutron undergoes gravitational potentials V in each brane + and -

- Under the influence of a magnetic vector potential, the neutron presents Rabi oscillations between both branes

$$P = \frac{4\Omega^2}{\eta^2 + 4\Omega^2} \sin^2\left((1/2)\sqrt{\eta^2 + 4\Omega^2}t\right)$$

with
$$\Omega = (1/2) g g_s \mu A_{amb} / \hbar$$
 and $\eta = (V_+ - V_-) / \hbar$

- Magnetic vector potential dependence of the phenomenum:

• Allows to expect an artificial control of the effect (stimulated swapping... later) M. Sarrazin, F. Petit, Phys. Rev. D 83, 035009 (2011)

• But also a spontaneous effect (astrophysical magnetic vector potential) M. Sarrazin, F. Petit, Eur. Phys. J. C **72** (2012) 2230 M. Sarrazin, G. Pignol, F. Petit, V.V. Nesvizhevsky, Phys. Lett. B**712** (2012) 213

- Can be discriminated from neutron-mirror neutron oscillation *M. Sarrazin, F. Petit, Eur. Phys. J. C* **72** (2012) 2230

Origin of the ambient magnetic vector potential

M. Sarrazin, F. Petit, Eur. Phys. J. C **72** (2012) 2230 M. Sarrazin, G. Pignol, F. Petit, V.V. Nesvizhevsky, Phys. Lett. B**712** (2012) 213

Gravitational contributions

- Gravitational interaction between neutron and environment

 $V_{grav,+} = 500 \text{ eV}$ from Milky Way core's grav. field $V_{grav,+} = 9 \text{ eV}$ from Sun's grav. field $V_{grav,+} = 0.65 \text{ eV}$ from Earth's grav. field $V_{grav,+} = 0.1 \text{ meV}$ from Moon's grav. field

- Gravitational contribution $V_{\text{grav},-}$ from another brane: unknown !

 \Rightarrow We can fairly assess that $|V_{grav,+} - V_{grav,-}| = \eta < 10^3 \text{ eV}$

N.B.: If the other brane is dense enough $|V_{\text{grav},+} - V_{\text{grav},-}| = \eta \sim 1 \text{ eV}$

M. Sarrazin, F. Petit, Eur. Phys. J. C **72** (2012) 2230 *M.* Sarrazin, G. Pignol, F. Petit, V.V. Nesvizhevsky, Phys. Lett. B**712** (2012) 213

14/23

As justify hereafter η >> Ω

$$P = \frac{4\Omega^2}{\eta^2 + 4\Omega^2} \sin^2\left((1/2)\sqrt{\eta^2 + 4\Omega^2}t\right)$$

- High oscillation frequency between branes: averaged probability p = <P>
- But: weak amplitude of the oscillations

M. Sarrazin, G. Pignol, F. Petit, V.V. Nesvizhevsky, Phys. Lett. B712 (2012) 213

First constraints from Storage time Vs. Collision rate

Experimental limits on neutron disappearance into another braneworld *M. Sarrazin, G. Pignol, F. Petit, V.V. Nesvizhevsky, Phys. Lett.* B**712** (2012) 213

First constraints from Storage time Vs. Collision rate

Experimental limits on neutron disappearance into another braneworld *M. Sarrazin, G. Pignol, F. Petit, V.V. Nesvizhevsky, Phys. Lett.* **B712** (2012) 213

16/23

Various wall thickness: to discriminate with an unexpected solid state or nuclear effect

 $\phi_0 \sim 10^9$ n/s (2 x 10⁷ n/s/cm²) L ~ 10 cm \Rightarrow Signal < 1 hit per second if p < 7 x 10⁻⁶

 $\phi_0 \sim 10^9$ n/s (2 x 10⁷ n/s/cm²) $L \sim 10$ cm \Rightarrow Signal < 1 hit per second if p < 7 x 10⁻⁶

With a 14h time acquisition we could reach $p < 3 \times 10^{-7}$

Neutrons shining through a wall: Minimal required conditions

- The very weak expected signal needs optimal conditions
 - Low noise device

I ARN device.

Cylindrical detector size: $\emptyset = 86 \text{ mm}, L = 88 \text{ mm}$ Low noise chamber : 50 x 50 x 50 cm³ Stand about 1.50 x 1.50 x 1.00 m³

G. Genard, V. Nuttens, V. Bouchat, G. Terwagne, Phys. Res. B 268 (2010) 1523 G. Genard, M. Yedji, G. Ross, G. Terwagne, Nucl. Instrum. Meth. B 264 (2007) 156

Neutrons shining through a wall: Minimal required conditions

- The very weak expected signal needs optimal conditions
 - Low noise device
 - \Rightarrow *Prospecting for the future:* Long detector: up to 200 cm?
 - What is the available place?

Neutrons shining through a wall: Minimal required conditions

- The very weak expected signal needs optimal conditions
 - Low noise device
 - \Rightarrow *Prospecting for the future:* Long detector: up to 200 cm?
 - What is the available place?
 - On-Off source: On-Off signal correlations
 - A large period range can be considered: Many hours up to milliseconds

Neutrons shining through a wall: Minimal required conditions

- The very weak expected signal needs optimal conditions
 - Low noise device
 - \Rightarrow *Prospecting for the future:* Long detector: up to 200 cm?

What is the available place?

• On-Off source: On-Off signal correlations

A large period range can be considered: Many hours up to milliseconds

• Cold neutrons for a better cross-section (4 Å < λ < 9 Å)

Neutrons shining through a wall: Minimal required conditions

- The very weak expected signal needs optimal conditions
 - Low noise device
 - ⇒ Prospecting for the future: Long detector: up to 200 cm?
 What is the available place?
 - On-Off source: On-Off signal correlations

A large period range can be considered: Many hours up to milliseconds

- Cold neutrons for a better cross-section (4 Å < λ < 9 Å)
- Intense neutron flux: Enhances measured signal

For instance if $\phi_0 \sim 10^9 \text{ n/s/cm}^2$ with $L \sim 10 \text{ cm}$

 \Rightarrow with a 14h time acquisition we could reach $p < 4 \times 10^{-8}$ (175 times better than today)

Summary

- \Rightarrow Braneworld is a concept inherited from High Energy Physics, which needs to be tested
- \Rightarrow Many Universe models consider two coexisting branes
- ⇒ New model-independent phenomenological consequences: Matter swapping between branes under magnetic vector potential constraint
- \Rightarrow The effect can be discriminated from other oscillations

- \Rightarrow Testing the braneworld hypothesis at low energies with cold neutrons
- \Rightarrow A fully relevant experiment at ESS: Neutrons shining through a wall

FACULTÉ DES SCIENCES

Thank you for your attention

ESS Science Symposium on Particle Physics at Long-Pulse Spallation Sources 25-27 March 2013 23/23 - Proton or electron:

$$\mathbf{H}_{\pm} = -\frac{\hbar^2}{2m} \left(\nabla - \left(i \frac{q}{\hbar} \mathbf{A}_{\pm} \right)^2 + g_s \mu \frac{1}{2} \sigma \cdot \mathbf{B}_{\pm} + V_{\pm} \right)$$

For charged particles, this term considerably inhibits off-diagonal terms

$$\mathbf{H}_{cm} = igg_{s}\mu \frac{1}{2} \begin{pmatrix} 0 & -\sigma \cdot \{\mathbf{A}_{+} - \mathbf{A}_{-}\} \\ \sigma \cdot \{\mathbf{A}_{+} - \mathbf{A}_{-}\} & 0 \end{pmatrix}$$

- He-3 or Xe-129, Li-6:

Spin-1/2, infinite lifetime, high-magnetic moment (Li-6) but...

Quantum-induced instantaneous electric dipole (required for London dispersion force)

 \Rightarrow Long enough to have the same consequences as a charge

- Neutron: ideal benchmark matter particle