
Studying possible higher twist contributions in the
inclusive charged hadron cross sections

Esko Pohjoisaho
Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland
Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland

E-mail: esko.pohjoisaho@jyu.fi

Abstract.
In the standard pQCD picture particles are produced via the parton jet fragmentation

process. However, there are also other production mechanisms like higher twist (HT) processes.
A usual example of a HT process is a direct production of an outgoing hadron, where the hadron
is produced in the hard subprocess without fragmentation.

We study the HT phenomena using a shape analysis (xT scaling) of the inclusive invariant
cross sections of charged hadrons, measured by the ALICE collaboration at center-of-mass
energies

√
s = 2.76 TeV and 7 TeV. The data is compared to PYTHIA8 event generator and

to a phenomenological model for HT. Using PYTHIA8, we explore a possible enhancement of
HT phenomena for isolated particles, by comparing the shapes of the isolated distributions to
inclusive distributions. The results from the standard PYTHIA8, without HT, is compared to a
PYTHIA8 where we had included a HT process.

Finally, we found out that the effects observed in the xT spectra originate from kinematic
biases posed by the isolation cuts, rather than from an enrichment of the HT hadrons at the
observed cross sections. A more detailed data analysis is ongoing.

1. Introduction
The cross section for inclusive pion production in pp collisions at

√
s = 200 GeV measured by

RHIC [1] was described well by an NLO pQCD calculation for pT > 2 GeV/c. The agreement
spanned seven orders of magnitude in the cross section. However, at the LHC energies, deviations
of factor two between the NLO and data have been reported by the ALICE collaboration [2]
and CMS [3] (see Fig 1). It is already known that selecting a different fragmentation function
[4] for the NLO calculation can bring down the deviation with data to 25 % [5]. However, it is
not yet fully understood to what extent the so called higher twist (HT) processes, additional to
NLO, contribute to the cross section. The HT processes have attracted attention also in the field
of heavy ion collisions, in the so-called “Baryon anomaly”, found in measurements of high-pT
baryon production in heavy ion collisions [6]. So far the question of HT in the LHC is not settled
[7].

1.1. xT scaling
The kinematics of a 2 → 2 process is completely fixed by the two dimensional quantities

√
s

and pT, and the two angles φ and θ. By using dimensional analysis and the scaled transverse



momentum xT = 2pT√
s
, one can express the invariant cross section in a factorized form

E
d3σ

dp3 = 1
pnT
F

(2pT√
s
, θ

)
= 1√

s
nG(xT, θ), (1)

where F and G are dimensionless scaling functions. Any combination of pT,
√
s or the scaled

transverse momentum xT that preserve the dimensions, will result in the scaling form of Eq.
(1). For any scale free theory and vector boson exchange process, the scaling exponent is n = 4.
However, the experimentally measured n is not a constant n = 4, but depends on the studied
process, collision energy and the range of xT, reaching values up to n ∼ 8 [8]. For example,
the intrinsic partonic transverse momentum kT, QCD radiation, running coupling αs, scaling
violations in parton distribution functions (PDF) and fragmentation functions (FF) and smearing
from the jet fragmentation transverse momentum jT lead into the experimentally observed n > 4
[8, 9]. For direct photons the exponent is predicted to be roughly one unit smaller due to the
absence of fragmentation and one power less in αs. This is also supported by the experimental
data for direct photons and jets [8]. At the LHC energies the pQCD predicts n ≈ 5 . . . 6.

To explicitly study the behaviour of the scaling exponent, one can choose invariant cross
sections from two data sets with different

√
s at the same values of xT. Using Eq. (1) for both

cross sections allows to cancel out the dimensionless scaling functions to get

n(xT,
√
s1,
√
s2) = ln(σinv(xT,

√
s2)/σinv(xT,

√
s1))

ln(
√
s1/
√
s2) . (2)

An experimental demonstration of xT scaling of charged hadron production in proton-proton
collisions measured by the CMS collaboration at CERN and CDF collaboration in Fermilab [3],
along with a global power law-fit, is presented in the upper panel of Fig. 1. Cross sections have
been scaled by

√
s
n, where the scaling exponent is n = 4.9, and one can see curves with different

center of mass energies collapse on top of each other in the high xT range. The black points
are for 7 TeV in CMS, red circles for 0.9 TeV in CMS, orange stars for 1.96 TeV in CDF, green
crosses for 1.8 TeV CDF and yellow diamonds for 0.63 TeV CDF data. In the lower panel, ratios
of data to NLO predictions are shown for different center-of-mass energies [3].

1.2. Higher twist
The term “twist” is a historical relic originating from the operator product expansion, which was
a tool used to obtain perturbative predictions for deep-inelastic scattering [10]. Today the leading
twist (LT) is understood as standard processes of the pQCD within the collinear factorization,
where hadrons are produced via fragmentation processes. In contrast, HT processes are often
understood as direct hadron production, where the hadron is produced directly in the hard
subprocess without fragmentation [8]. Due to the lack of fragmentation in HT, a production of a
direct hadron is argued to involve a large number of active fields, which, according to dimensional
counting rules presented in [6], lead to steeper pT spectra and larger scaling exponents n than
for the LT hadrons. Therefore the scaling exponents are compared with those obtained from the
NLO pQCD [5], as was done in [8].

The first calculations to estimate the size of the higher-twist contributions were carried out by
Bagger and Gunion [11]. They found that the pion form factor in the γq → πq process resulted
in an extra factor of 1/ŝ where ŝ is the partonic center-of-mass energy, causing an n = 6 scaling
form for the cross section in Eq. (1). The HT contribution has been estimated to be significant
especially in the kinematical range of high xT and low pT, i.e. at low

√
s [10, 12].

Previously, there have been various attempts to experimentally measure the magnitude of the
HT effects. Collaborations such as WA77, WA69 and the OMEGA were presenting their findings



Figure 1. (Upper panel) Invariant cross sections as a function of xT scaled by (
√
s)4.9 of inclusive

charged particles to demonstrate xT scaling with different
√
s. (Lower panel) Ratios between

data and NLO QCD calculation is shown. Figure from [3].

of direct meson production in a Workshop on High pT Physics and Higher Twists in 1988. At
that time there were many promising results interpreted as evidence of HT, in processes such as
ν̄N → µ+π−X, Drell-Yann, ρ production and in e+e− data [13].

In search for direct meson production in π− Be interactions by the WA77 collaboration [14],
the ρ0 production was found to be consistent with LUCIFER Monte Carlo (MC) generator [15]
with a small HT contribution, whereas the other mesons such as φ and K were found to be
consistent with the purely leading twist MC. Based on MC studies of γq collisions carried out by
the WA69 experiment [16], it was found that the shape of the inclusive pT distribution was not
changed significantly by the HT. Based on this remark it would be preferable to take advantage
of the expected special kinematical properties of a HT process, by using cuts that enrich the
fraction of HT particles in the data. Because the direct meson is created without fragmentation,
one could argue that using an isolation cut would enrich the fraction of these mesons in the data,
by suppressing the LT mesons originating from fragmentation processes. The effect of isolation
was studied in the MC level by the OMEGA Photon Collaboration [13], where the meson was
not allowed to have any track in its vicinity in a cone of a fixed size. The result was that this
kind of isolation did not help significantly in the kinematical range where the HT processes were
expected to be significant compared to LT. Still, by including a HT component on top of a QCD
based model was in somewhat better agreement with the data than a fit without HT, leaving
some room for HT contribution in the interpretation of the data.



More recently, the xT scaling exponents from world data were studied in [8]. Especially for
hadrons at large xT, the exponents were found to be systematically larger than predicted from
the NLO pQCD calculations, whereas the photon and jet exponents were in agreement with
the theory. The authors suggested that the presence of HT contributions could be a possible
explanation for the large exponents as compared to the NLO calculation.

To create predictions for the scaling exponents at RHIC and LHC energies, a two component
model was proposed [8] for the cross section

σmodel(pp→ π X) ∝ A(xT)
p4

T
+ B(xT)

p6
T

, (3)

where functions A(xT) and B(xT) represent LT and HT contributions with their typical pT
dependence. Taking A and B as constants, the effective exponent in this model depends on the
relative strength of the HT corrections to the LT cross section, reflected by the ratio B/A [8].
Using Eq. (3) and the NLO scaling exponent, they constructed an effective exponent

n(xT, pT, B/A) ≡ −∂ ln σmodel

∂ ln pT
+ nNLO(xT, pT)− 4

= 2B/A
p2

T +B/A
+ nNLO(xT, pT). (4)

In Eq. (4) the terms nNLO − 4 have been added to the logarithmic derivative so that the n
converges into nNLO when the HT contributions vanish (i.e. B → 0). This corresponds to the
definition of NLO pQCD as a LT in [8], although from Eq. (3) the effective exponent for LT
contribution would be nmodel

B→0 = 4 for fixed xT, corresponding to a scale free theory. By fitting
Eq. (4) to the world data, the authors of [8] obtained B/A ∼ 50GeV2. By parametrization of
Eq. (4) they created predictions for the scaling exponents at RHIC and LHC energies.

2. Inclusive xT scaling exponents by ALICE
Differential cross sections of charged particles in inelastic pp collisions at

√
s = 0.9, 2.76 and

7 TeV have been measured by the ALICE collaboration at the LHC. The measurements were
performed in the pseudorapidity range |η| < 0.8 for particles having pT > 0.15 GeV/c [2]. The
data were collected based on tracking information from the Inner Tracking System (ITS) and
the Time Projection Chamber (TPC), which are located in the central barrel of the experiment.
The minimum-bias interaction trigger was derived using signals from the forward scintillators
(VZERO), and the two innermost layers of the ITS, called the Silicon Pixel Detector (SPD) [2].

In this study, the cross sections as a function of xT at 2.76 and 7 TeV were derived from the
charged hadron pT spectra measured by ALICE [2], and the scaling exponents were calculated
using Eq. (2) for the xT spectra. In Fig. 2 (a), the scaling exponents are plotted as a function of
xT for the NLO calculation [5] (black line), default PYTHIA8 simulation [17] (blue points), and
for the exponents calculated from the inclusive charged particle data measured by the ALICE
collaboration [2] (red points) at 7 TeV and 2.76 TeV.

In Fig. 2 (b) the NLO exponents have been subtracted from the ALICE data and PYTHIA8
exponents from Fig. 2 (a), to compare the results with prediction bands from [8], where the
prediction was based on further parametrization of Eq. (3) for the difference to the NLO exponent,
i.e. ∆fit = nmeasured − nNLO. The red band is the prediction for the LHC energies and the
blue band for RHIC energies [18]. The black points are preliminary data from the PHENIX
collaboration [19], blue points from the default PYTHIA8 and red points the ALICE data.
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Figure 2. (a) Scaling exponents n extracted from NLO, ALICE [2] and PYTHIA8 pp data. (b)
The difference ∆n to the NLO exponents (i.e. ∆fit) from ALICE, PHENIX preliminary data [19]
and PYTHIA8, with prediction bands based on the two-component model [8].

The data points in Fig. 2 (b) seem to be in agreement with the prediction. Preliminary data
points from PHENIX have been shown to be in agreement with the prediction band for RHIC
energies [18], but until now the inclusive ALICE data points have not been shown on top of the
prediction for LHC energies. The points from PYTHIA8 are closer to the NLO than the ALICE
data, but still non-zero. In fact, it was seen that PYTHIA8 describes the measured shapes of the
cross sections well but the absolute normalization disagrees with the ALICE data 20− 25 %
(not shown here). If the pT cross sections were manually rescaled closer to data, the resulting
scaling exponents n would (naturally) agree with the measured data, i.e. the difference between
the data and PYTHIA8 on Fig. 2 (b) originates from the fact that this PYTHIA tune misses
the absolute normalization of the cross sections.

3. PYTHIA implementation of higher twist
There are no HT processes, like direct hadron production, implemented in the standard PYTHIA8
[17]. A process of this kind was added [20] into PYTHIA8 using the elementary cross section for
a HT direct pion production process (qAg → qBπ) computed in [12]. The cross section is

dσ̂
dt̂

= πα2
s

ŝ2
αs
4π

s0
ŝ
F (cos θ), (5)

where s0 = 16π2f2
π is a higher twist scale, fixed by the pion weak decay constant fπ, and F (cos θ)

is the angular function for the c.m. scattering angle θ, cos θ = 1 + 2t̂/ŝ, and has a form

F (z) = 2
27(1− z)

(
1 + 4

(1 + z)2

)
. (6)

The effects of using an isolation cut was studied with PYTHIA8. The isolation condition was
checked for every particle by adding up the pT of other final charged particles around it inside a
cone of radius R =

√
∆η2 + ∆φ2 = 0.4. To declare a particle as isolated, the pT sum in the cone

was required to be less than 10% of the particle’s pT. It has been suggested that isolation cut



would enrich the fraction of HT in the data. As a result, the scaling exponents n obtained from
the isolated xT spectra were anticipated to be larger than in the inclusive case [8].
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Figure 3. Scaling exponents from PYTHIA8 with Higher twist process on/off for inclusive and
isolated hadrons.

In Fig. 3 one can observe that the effect of the HT process depicted by Eq. (5) to the exponent
n in PYTHIA8 is quite negligible. In fact, there was on the average only one HT pion per 10000
charged hadrons in the simulation and applying the isolation cuts enriched the ratio only by a
factor of 2. This suggests that the HT process described in [12] does not have a significant role
in LHC energies.

One can see from Fig. 3 that the isolated spectrum has larger n than the inclusive spectrum,
even without any HT processes, suggesting a kinematical bias caused by the isolation cut itself.
This effect was further studied by a toy Monte Carlo model based on the “the parent-child
relationship” (PCR), presented by Bjorken in [21]. Assuming that the fragmenting partons follow
a power law distribution, dN/dpTq ∼ p

−(p−1)
Tq , where the pTq is the parton pT, the final hadron

spectrum follows asymptotically the same shape

1
pTh

dN
dpTh

= 1
ppTh

∫ 1

xT
zp−2D(z)dz, (7)

where pTh is the transverse momentum of the hadron and D(z) is the fragmentation function. In
the toy MC model we use the power law exponent p = 6 for the “2.76 TeV” and p = 5 for the “7
TeV” distributions, that roughly give the asymptotic behaviour of the measured data [2]. For the
fragmentation function, we took for simplicity D(z) ∼ exp(−8.2z), as was done in [22].

To get a simple estimate of the isolation effects corresponding 10 % cone activity, we first
force z > 0.9 in the integral in Eq. (7), which yields a constant isolation fraction

isolated
inclusive =

∫ 1
0.9 z

p−2D(z)dz∫ 1
xT≈0 z

p−2D(z)dz
. (8)

By inserting fractions obtained from Eq. (8) into Eq. (2), we found out that the scaling exponent
is increased by 0.77 as compared to the non-isolated case. In addition, a cascade process was
used. By repeatedly sampling a fragmentation variable z from the exponential “fragmentation



function”, one could create a collection of hadrons from the initial parton. The isolation condition
for the leading hadron could then be checked by comparing the hadron pT to the pT sum of all
the other hadrons in the toy MC event. It was observed that mostly the high z hadrons survive
the isolation cut. Isolation probabilites obtained with this method are shown in Fig. 4 (a), and
the increase of the scaling exponents, ∆n = nisolated − n, is shown in Fig. 4 (b). Using the
isolation fractions from Fig. 4 (a) with Eq. (2), the scaling exponent increased by 0.679± 0.008,
marked by the red line in Fig. 4 (b). This result is of similar magnitude as with the integral
method. More importantly, the increase of the exponent in the toy MC model is very close to
the increase we observed in the standard PYTHIA8, see Fig. 3.
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Figure 4. (a) Isolation fractions obtained from the toy MC model for a parton cascade. (b)
The difference ∆n caused by the isolation cut in the toy MC.

4. Conclusion
The xT scaling exponents n for inclusive charged hadrons were extracted from ALICE pp data,
PYTHIA8 and NLO at

√
s = 7 TeV and 2.76 TeV. The scaling exponents obtained from the

ALICE data are in agreement with the two-component model predictions. It was shown that
PYTHIA8 describes the shape of the pT spectra quite well, but the normalization is off by ∼ 20 %.
If this normalization were correct, the scaling exponents would be similar to data. As it was
expected that the HT contribution would steepen the spectra and thus increase n, the similar
shape of the data with PYTHIA8 may suggest that the HT contribution is not very large.

An MC level study of HT contribution was made by implementing a direct π± production
process [12] into PYTHIA8 [20]. It turned out that the fraction of HT pions of all charged hadrons
was roughly 1/10000 in the simulation, and applying the isolation cuts did not significantly enrich
the ratio. Hence, the direct pion production as described by [12] gives a negligible contribution
to the cross section and leads into barely visible effects in both inclusive and isolated scaling
exponents.

The isolation cut was seen to increase n due to a kinematical bias in two ways. Firstly, by
biasing the fragmentation into large values of z and thus making the spectra steeper. Secondly,
the pT cross section is harder at 7 TeV than at 2.76 TeV, which lead into higher probability for a
hadron to be isolated at 2.76 TeV collision energy. The difference in the isolation probabilities
directly results in an increase of the scaling exponent. It seems that the observed effect could be
largely explained by these kinematical biases. A more careful study would be needed to verify to



what extent there is room for HT contributions in the data. Also, the isolation study is so far
done only with PYTHIA8, while the analysis for the ALICE data is ongoing.
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