

Jet Structure in pp and Pb-Pb Collisions at ALICE

BMBF Forschungsschwerpunkt

201

ALICE Experiment

Oliver Busch for the ALICE Collaboration

- Motivation
- ALICE experiment
- Jet structure in pp
- Hadron triggered recoil jets
- Di-Hadron correlations

Motivation

40

8

 $p_{t,assoc}$ (GeV/c)

p_ (GeV/c)

ALICE

50

10

ALICE

- VZERO
 - MB trigger and centrality
 - ITS and TPC:
 - charged particle tracking
 - $|\eta|$ < 0.9, $p_{\rm T}$ >150 MeV/c
 - EMCal: neutral particles
 - |η|< 0.7, 1.4 < φ < π
 - cluster $E_{\rm T}$ > 300 MeV
 - jet trigger

- Jets from charged tracks in central barrel
- FastJet anti-k_T R=0.2, ...,0.4, $|\eta^{jet}|$ < 0.9 R

full jets with EMCAL: C. Nattrass, Thursday

pp charged jet cross sections

- Measured in minimum bias collisions at \sqrt{s} = 7 TeV
- Good agreement with ATLAS charged jet measurements (despite slightly different acceptance, track $p_{\rm T}$ range and ALICE UE subtraction)

pp charged jet fragmentation at \sqrt{s} = 7 TeV

- $p_{\rm T}$ distribution of particles in jet
- Scaled momentum $\xi = ln \, (p_{\rm T}^{\rm jet,ch}/p_{\rm T}^{\rm particle})$ hump-backed plateau
- Underlying event subtracted from data + and PYTHIA MC

Oliver Busch – high p_T at LHC 2013

 Fragmentation and jet structure reasonably described by event generators

Jets in Heavy-Ion Collisions

Jets in heavy-ion collisions

- Underlying event: large abundance of low momentum particles
 - uncorrelated background to 'true' hard scattering
 - purely combinatorial 'low'-momentum jets
- Average Background ρ : median p_T density / area from k_T clusters
- Subtract jet by jet: $p_{\mathrm{T}}^{\mathrm{jet}} = p_{\mathrm{T,raw}}^{\mathrm{jet}} \rho \times A$
- Correct for background fluctuations and detector effects via unfolding

Charged jet spectra

- $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV, R = 0.2, 0.3
- Strong centrality dependent suppression

Charged jet R_{CP}

• *R_{CP}* : reference from peripheral Pb-Pb events

- $R_{CP}(p_{\rm T}) = \frac{\langle N_{coll}^p \rangle}{\langle N_{coll}^c \rangle} \frac{\mathrm{d}^2 N_{\rm ch}^c / \mathrm{d}\eta \,\mathrm{d}p_{\rm T}}{\mathrm{d}^2 N_{\rm ch}^p / \mathrm{d}\eta \,\mathrm{d}p_{\rm T}}$
- ~ similar to charged hadrons
- Momentum dependent
 suppression

Comparison to models

- Charged jet R_{AA} with PYTHIA pp MC reference
- Well described by JEWEL energy loss MC

Jet structure

- Spectral ratio R=0.2 / 0.3: indirect measure of jet structure
- Consistent with PYTHIA
 - \rightarrow 'vacuum fragmentation' in small cones

(for detected energy) ?

Hadron triggered recoil jets

- Jets recoiling from charged hadron
- Δ_{recoil} : remove residual combinatorial jets \rightarrow extended low p_{T} reach and larger R

(G. de Barros, arXiv: 1208.1518)

- Sensitive to:
 - Q^2 dependence of jet quenching
 - path length dependence of energy loss

Difference of semi-inclusive recoil jet yields

- $\Delta I_{AA} > R_{AA}$:
 - tangential emission? Medium-Shower interaction ?
 - gluon filtering + Q^2 bias
 - flatter parton spectrum?
- Similar for both R: no large energy redistribution

Oliver Busch – high p_T at LHC 2013

ΔI_{AA} : model comparison

- Well reproduced by YAJEM
- Strong discrepancy to JEWEL+PYTHIA (preliminary)
- Note: R_{AA} and ΔI_{AA} sample energy loss differently

YAJEM: Phys. Rev. C 83 (2011) 02490867

Di-Hadron Correlations

Di-Hadron correlations

- allow to study low p_T fragmentation in presence of a large background
- angular correlations in $(\Delta \phi, \Delta \eta)$ between intermediate p_T trigger and low p_T associated charged particles
- remove long range correlations (mostly flow) subtracting side-bands $1 < |\Delta \eta| < 1.6$
 - \rightarrow study near-side
- corrections for tracking efficiency, secondaries contamination and acceptance

Lowest (p_{T,trig},p_{T,assoc}) bin

- + 2 $< p_{T,trig} <$ 3 GeV/c , 1 $< p_{T,ass} <$ 2 GeV/c
- strong asymmetry
 - \rightarrow fragments coupling to longitudinal flow ?

(COMPARE N. Armesto, C. Salgado, U. A. Wiedemann, PRL 93 242301 (2004))

- + 2 $< p_{T,trig} <$ 3 GeV/c , 1 $< p_{T,ass} <$ 2 GeV/c
- strong asymmetry
 - \rightarrow fragments coupling to longitudinal flow ?

(Compare N. Armesto, C. Salgado, U. A. Wiedemann, PRL 93 242301 (2004))

N. Armesto, C. Salgado, U. A. Wiedemann PRL 93 242301 (2004)

Model comparison

- Double 2-D Gaussian fit:
 - $N(\alpha \; Gauss(0, 0, \Delta\phi, \Delta\eta) + (1 \alpha) \; Gauss(0, 0, \Delta\phi, \Delta\eta))$
- Asymmetry reproduced by AMPT 2.25 (Phys. Rev. C 72, 064921 (2005))
- AMPT: describes collective effects (flow) at LHC,

jet-medium interactions: parton transport, recombination

• pp: PYTHIA Perugia0 (Phys. Rev. D 82, 074018 (2010))

Conclusions & outlook

- Spectra, jet fragmentation & structure in pp
- Charged jet spectra and first investigations of jet structure in Pb-Pb
- Strong, energy dependent suppression of jet yield, jet structure consistent with pp
 - \rightarrow full jets R_{AA}: talk by C. Nattrass, Thursday
- Hadron triggered recoil jets allow to go to higher R with minimal fragmentation bias
 - \rightarrow results for R=0.5 under preparation
- Di-Hadron correlations show asymmetric jet broadening at lowest constituent $p_{\rm T}$

- backup -

Tracking jets:

- $|\eta|^{\text{track}} < 0.9$
- R = 0.4, $|\eta|^{\text{jet}} < 0.5$
- $p_{\rm T}^{\rm track} > 0.150 \, {\rm GeV/c}$
- hybrid approach for uniform tracking efficiency: combine tracks with / without full ITS
- momentum resolution: $\delta dp_T/p_T = 4\%$ (7%) at 40 GeV/c
- Full jets including EMCAL:
 - $|\eta| < 0.7, 1.4 < \Phi < \pi$
 - cluster $E_{\rm T}$ > 300 MeV
 - hadronic correction for charged particles

Raw charged jet spectra

- Less background by smaller R
- Caveat: may also reduce sensitivity to jet quenching

Full jet R_{AA}

- Complete jet reconstruction from charged particles + EMCal
- R=0.2, 5 GeV/c fragmentation bias to reduce combinatorial jets
- Strong jet suppression: $R_{AA} \leq 0.5$

