Centrality and rapidity dependence of inclusive pion and prompt photon production in p+Pb collisions at the LHC with EPS09s nPDFs High- p_T workshop

Ilkka Helenius

University of Jyväskylä Department of Physics

27.09.2013

Outline		

Introduction

- Nuclear Parton Distribution Functions
- Geometry of a Heavy Ion Collision
- Pramework
 - Spatially dependent nPDFs
 - [I.H, K.J. Eskola, H. Honkanen, C.A. Salgado, JHEP 1207 (2012) 073]
 - Centrality classes with Optical Glauber model

8 Results

- π^0 and charged hadron production in p+Pb
 - [I.H, K.J. Eskola, H. Honkanen, C.A. Salgado, JHEP 1207 (2012) 073]
- $\bullet~{\rm Prompt}~\gamma~{\rm production}$ in Pb+Pb and p+Pb
 - [I.H, K.J. Eskola, H. Paukkunen, JHEP 1305 (2013) 030]

Summary

Introduction ●○			
Nuclear Parton Di	stribution Functions	(nPDFs)	

Collinear Factorization in A+B collisions

$$\mathrm{d}\sigma^{AB \to k+X} = \sum_{i,j,X'} f_i^A(x,Q^2) \otimes f_j^B(x,Q^2) \otimes \mathrm{d}\hat{\sigma}^{ij \to k+X'} + \mathcal{O}(1/Q^2)$$

Nuclear Modification of the PDFs

- Bound nucleon PDFs \neq free nucleon PDFs $f_i^A(x,Q^2) = \frac{R_i^A(x,Q^2)}{r_i^A(x,Q^2)} \cdot f_i^N(x,Q^2)$
- $R_i^A(x,Q^2)$ determined via global analyses
 - EKS98 (LO DGLAP evolution)
 - EPS08 (LO DGLAP evolution)
 - EPS09 (LO and NLO + error sets)
- All global fits have considered only minimum bias collisions

	Framework	Results	Summary
	●○○○	000000000	○
Model Framework			

Nuclear modifications with spatial dependence

• We replace

$$R^A_i(x,Q^2) \to r^A_i(x,Q^2,\mathbf{s}),$$

where $\ensuremath{\mathbf{s}}$ is the transverse position of the nucleon

Definition

$$R_i^A(x,Q^2) \equiv \frac{1}{A} \int \mathrm{d}^2 \mathbf{s} \, T_A(\mathbf{s}) \, r_i^A(x,Q^2,\mathbf{s}),$$

where $R_i^A(x,Q^2)$ is taken from EKS98 or EPS09 global fits

• Assumption: spatial dependence related to $T_A(\mathbf{s})$ as follows:

$$r_i^A(x,Q^2,\mathbf{s}) = 1 + \sum_{j=1}^n c_j^i(x,Q^2) [T_A(\mathbf{s})]^j$$

• Important: No A-dependence in the fit parameters $c_i^i(x,Q^2)$

	Framework	Results	Summary
	0●○○	000000000	O
Fitting Procedure			

Parameters $c_j(x,Q^2)$ obtained by minimizing the χ^2

$$\chi_i^2(x,Q^2) = \sum_A \left[\frac{R_i^A(x,Q^2) - \frac{1}{A} \int d^2 \mathbf{s} \, T_A(\mathbf{s}) r_i^A(x,Q^2,\mathbf{s})}{W_i^A(x,Q^2)} \right]^2$$

 A-dependence of R^A_i(x, Q²) well reproduced with n = 4:

• Fitting is done also for the EPS09 error sets (LO&NLO)

Outcome: Spatially dependent nPDF sets EPS09s and EKS98s

	Framework ○○●○	
Centrality depende	nt R_{AB}	

The yield depends on b also via nPDFs:

$$dN^{AB \to k+X}(\mathbf{b}) = \int d^2 \mathbf{s} T_A(\mathbf{s_1}) T_B(\mathbf{s_2}) \sum_{i,j,X'} r_i^A(x,Q^2,\mathbf{s_1}) f_i^N(x,Q^2)$$
$$\otimes r_j^B(x,Q^2,\mathbf{s_2}) f_j^N(x,Q^2) \otimes d\hat{\sigma}^{ij \to k+X'}$$

Nuclear Modification Factor

$$R_{AB}^{k}(b_{1},b_{2}) = \frac{\left\langle \frac{\mathrm{d}^{2}N_{AB}^{k}}{\mathrm{d}p_{T}\mathrm{d}y} \right\rangle_{b_{1},b_{2}}}{\frac{\left\langle N_{bin} \right\rangle_{b_{1},b_{2}}}{\sigma_{inel}^{NN}} \frac{\mathrm{d}^{2}\sigma_{pp}^{k}}{\mathrm{d}p_{T}\mathrm{d}y}} = \frac{\int_{b_{1}}^{b_{2}} \mathrm{d}^{2}\mathbf{b} \frac{\mathrm{d}^{2}N_{AB}^{k}(\mathbf{b})}{\mathrm{d}p_{T}\mathrm{d}y}}{\int_{b_{1}}^{b_{2}} \mathrm{d}^{2}\mathbf{b} T_{AB}(\mathbf{b}) \frac{\mathrm{d}^{2}\sigma_{pp}^{k}}{\mathrm{d}p_{T}\mathrm{d}y}}$$

- Centrality classes defined in terms of impact parameter intervals
- $\bullet \ b_1 \mbox{ and } b_2 \mbox{ from optical Glauber model}$

	Framework ○○○●	
Centrality classes		

Optical Glauber Model

- Probability for inelastic collision $p_{inel}^{AB}(\mathbf{b}) \approx 1 - e^{-T_{AB}(\mathbf{b})\sigma_{inel}^{NN}}$
- Inelastic cross section for $[b_1, b_2]$ $\sigma_{inel}^{AB}(b_1, b_2) = \int_{b_1}^{b_2} d^2 \mathbf{b} \, p_{inel}^{AB}(\mathbf{b})$
- For p+A we assume a point-like proton $\Rightarrow T_{pA}(\mathbf{b}) = T_A(\mathbf{b})$
- $T_A(\mathbf{s})$ from Woods-Saxon density:

$$\rho_A(\mathbf{s}, z) = \frac{n_0}{1 + \exp[\frac{\sqrt{\mathbf{s}^2 + z^2} - R_A}{d}]}$$

• Example: p+Pb at the LHC $\sqrt{s_{NN}} = 5.0 \text{ TeV}, \sigma_{inel}^{NN} = 70 \text{ mb}$

		Results •000000000	
p+Pb collisions at	the LHC		

p+Pb pilot run in 2012

- ALICE measurement for charged particles
- Minimum bias result = averaged over all centralities

Our π^0 prediction (JHEP 07 (2012) 073) consistent with the data

HIJING with scale independent strong gluon shadowing not supported by the data

		Results 0●00000000	
p+Pb collisions at	the LHC		

Nuclear modification factor:

- Data best described with Kretzer fragmentation functions
- Differences in dN cancel out in ratio $R_{\rm pPb}$
 - $\Rightarrow {\it R}_{\rm pPb}$ not sensitive to FFs

• $R_{\rm pPb}$ for inclusive π^0 at $\sqrt{s_{NN}} = 5.0 \,\mathrm{TeV}$ and y = 0 in four centrality classes in NLO (with INCNLO) [JHEP 1207 (2012) 073]

• Stronger nuclear effects in central collisions

• $R_{\rm pPb}$ for inclusive π^0 at $\sqrt{s_{NN}} = 5.0 \,\mathrm{TeV}$ and y = 4 in four centrality classes in NLO (with INCNLO) [Work in progress]

• More suppression at small p_T than at y = 0

• Which x_2 values different rapidities probe?

• Contribution to $d\sigma$ from broad x_2 range also at forward rapidities [Work in progress]

		Results ○○○○●○○○○	
Prompt γ productio	n		
Direct photon productic	n Fragmenta	ation photon production	on
e.g. Compton scattering	g parton frag	gments into photon, e	e.g.
• Calculable from perturbative QCD	Calculat spectra	ed by convoluting the with non-perturbative	e parton
e.g. Compton scattering 	 parton frago Calculat spectra fragmen 	gments into photon, e	e parton

Isospin effect

- Nuclei consist of protons and neutrons
 - \Rightarrow Smaller charge density than in protons
- Photons couple to electric charge
 - \Rightarrow Suppression in the large x region where valence quarks dominate

Introduction

Framework

Results ○○○○○●○○○ Summary 0

Prompt γ production in Pb+Pb

 $R_{\rm PbPb}$ for inclusive γ at $\sqrt{s_{NN}}=2.76\,{\rm TeV}$ and |y|<1.44 in different centrality classes in NLO [JHEP~1305~(2013)~030]

- CMS data for isolated and calculation for inclusive photons
- Isolated (JETPHOX) and inclusive (INCNLO) $R_{\rm PbPb}^{\gamma}$ compatible in min. bias
- \Rightarrow Comparison ok
- Note smaller nPDF uncertainties than in CMS paper [*Phys.Lett.* B710 (2012) 256-277]

• $R_{\rm pPb}$ for prompt γ at $\sqrt{s_{NN}} = 5.0 \,\mathrm{TeV}$ and y = 0 in four centrality classes in NLO (with INCNLO) [JHEP 1305 (2013) 030]

• More suppression than for π^0 's at low p_T

• $R_{\rm pPb}$ for prompt γ at $\sqrt{s_{NN}} = 8.8 \,\mathrm{TeV}$ and y = 4.5 in four centrality classes in NLO (with INCNLO) [Work in progress]

• Larger suppression than at y = 0

Direct vs. fragmentation photons

- The contribution from direct and fragmentation component
- The $R_{\rm pPb}$ for direct and fragmentation component

- In NLO the division scale dependent
- $\bullet\,$ At low p_T the fragmentation photons dominate
- Isolation suppresses mostly fragmentation component \Rightarrow Isolated B^{γ} between the inclusive and direct B^{γ}
 - \Rightarrow Isolated $R^{\gamma}_{
 m pPb}$ between the inclusive and direct $R^{\gamma}_{
 m pPb}$

		Summary ●
Summary and Cond	lusions	

Summary

- Determined new spatially dependent nPDF sets EPS09s and EKS98s based on
 - A-dependence of the globally fitted nPDFs
 - Power series ansatz in $T_A(\mathbf{s})$
- Made EPS09s and EKS98s publicly available at our web page
- Calculated the R_{AB} for inclusive π^0 and prompt γ at mid- and now also at forward rapidities for various collisions and centralities

Conclusions & Outlook

- \bullet Predicted centrality dependence mild but prehaps measurable in p+Pb at LHC
- Contribution to $\mathrm{d}\sigma^{\pi^0}$ from broad x_2 range also at large y
- Which x_2 region isolated photons probe?

Backup

High- p_T workshop 27.09.2013

I. Helenius (JYFL)

Prompt γ production in Au+Au at y = 0

• $R_{\rm pPb}$ for prompt γ at $\sqrt{s_{NN}} = 200 \,{\rm GeV}$ and y = 0 in four centrality classes in NLO (with INCNLO) [JHEP 1305 (2013) 030]

• At $p_T < 4 \,\mathrm{GeV/c}$ contribution from thermal photons also

Prompt γ production at forward rapidities

• We have now resolved the numerical issues at small x in the INCNLO code (v1.4)

 \Rightarrow We can go to lower p_T 's also at the forward rapidities

Prompt γ production at forward rapidities

• We have also studied whether the planned forward calorimeter in ALICE could provide further constraints for the nPDFs:

Figure from H. Paukkunen, relative error estimates from M. Leeuwen

• Estimated errors of the same order than in the EPS09 nPDFs

Charged hadron yield in p+p

• Data/NLO ratios with different FFs for high \sqrt{s} data

• Most recent FFs overpredict the high p_T and \sqrt{s} data

Fragmentation Functions

Charged hadron FFs for gluons:

Charged hadron FFs for u-quarks:

- \bullet Quark FFs well constraint with $\mathrm{e}^+ + \mathrm{e}^-$ data
- Large diffenrences in gluon FFs