Overview of STAR results on correlations, jets and heavy-flavor production

Jana Bielčíková (for the STAR Collaboration)

Nuclear Physics Institute ASCR Czech Republic

9th International Workshop on High-p_T Physics at LHC, 2013, Grenoble, France

CMS, PLB 718 (2012) 795

Di-hadron correlations in d+Au collisions

$\Delta \phi$ projections in different $\Delta \eta$ (TPC multiplicity $|\eta| < 1$ as centrality)

- data corrected for efficiency of associated hadrons: 85 ± 5%
- syst. error from different sizes of $\Delta \phi$ region for ZYAM.

$\Delta\eta$ projections in different $\Delta\varphi$

Conditional yield vs multiplicity

Central-peripheral correlation functions, charge dependence 0.15 < p_T^{trig} < 3.0 GeV/c, 1 < p_T^{assoc} < 2 GeV/c

"Near-side peak" shows jet-like features of charge-ordering.

Jana Bielcikova (STAR)

Fourier analysis of correlation functions (I)

$V_n = \langle \cos(n\Delta \varphi) \rangle$

- No ZYAM
- No central-peripheral
- p_T dependence: one particle p_T is fixed to 0.5-2 GeV/c

Correlations in d+Au have non-zero V_1 and V_2 components

Fourier analysis of correlation functions (II)

Centrality dependence:

- $V_1 \sim 1/N$
 - $V_2 \sim \text{const.}$ with multiplicity
- V_2 component is large even at very forward η (d-side)

v_2 in cold nuclear matter at RHIC vs LHC

- v_2 {2} is insensitive to multiplicity in d+Au at RHIC and p+Pb at LHC
- v_2 {4} at LHC is independent of multiplicity except for peripheral p+Pb What is the physics origin of this v_2 ?

Hydrodynamic flow? In peripheral collisions? No increase with multiplicity? Color Glass Condensate? No increase with multiplicity?

New data on PID triggered correlations

Data set: 200 GeV Au+Au Central (Run 10) 150M events 200 GeV d+Au MinBias (Run 8) 46M events PID: TPC dE/dx based, statistical separation

See talk by O. Evdokimov (STAR) – Saturday, Sep. 28, 9:00

A closer look on hadronization effects and origin of the ridge ...

π triggers:
 large cone, small ridge
 p+K triggers:
 small cone, large ridge

Jana Bielcikova (STAR)

2+1 correlations: di-jet study

"Pin" the jet axis by selecting back-to-back triggers. Investigate distributions of associated hadrons with respect to both trigger hadrons.

symmetric triggers $(p_{T1} \sim p_{T2})$ 5 < p_{T1} < 10 GeV/*c*, 4 GeV/c < p_{T2} < p_{T1} 1.5 GeV/*c* < p_{T}^{assoc} < p_{T1}

STAR, PRC 83 (2011) 061901

Central Au+Au ~ d+Au collisions:

- no away-side suppression
- no significant shape/yield modifications
- no apparent ridge present

Sampling of surface-biased/unmodified di-jets? Di-jets where both jets lose similar amounts of energy?

Look at p_T asymmetric di-jets using elmag.calorimeter for T1

12

2+1 correlations: di-jet energy imbalance

Jet energy ~ Σp_T within the 0.5x0.5 ($\Delta \eta \times \Delta \phi$)

 \rightarrow investigate relative energy imbalance:

Energy imbalance:

 $\Delta(\Sigma E_{T}) = (E_{T}^{T1} + \Sigma p_{T}^{assoc,near}) - (p_{T}^{T2} + \Sigma p_{T}^{assoc,away})$

- non-zero relative energy imbalance for asymmetric triggers observed
- the imbalance increases with trigger asymmetry
- Indication of softening of fragmentation function for selected di-jets
- qualitatively consistent with longer path-lengths traversed and higher energy loss

Jet-hadron correlations

- jet reconstruction: anti- k_T algorithm (R = 0.4) with a trigger tower in BEMC with $E_T > 6 \text{ GeV}$ and constituent tracks/towers with $p_T(E_T)>2 \text{ GeV}$ to reduce background fluctuations (NOTE: "a highly biased jet population")
- recoil (away-side) jet fragmentation is unbiased

larger kinematic reach compared to di-hadron correlations

Quantifying properties of jet-hadron correlations

STAR, arXiv: 1302.6184 ; YaJEM-DE, T. Renk, PRC 87 (2013) 2, 024905

Away-side Gaussian width:

suggestive of medium induced broadening

BUT!

highly depends on $v_3 \rightarrow$ further information on v_2^{jet} and v_3^{jet} needed

Away-side energy balance:

$$D_{AA}(p_T^{assoc}) = Y_{AuAu}(p_T^{assoc}) \cdot \langle p_T^{assoc} \rangle_{AuAu} -Y_{pp}(p_T^{assoc}) \cdot \langle p_T^{assoc} \rangle_{pp}$$

Suppression of high- p_T associated hadron yield ~ balanced by enhancement at low- p_T .

The redistribution of energy quantitatively consistent with YaJEM-DE model of in-medium shower modification.

Jana Bielcikova (STAR)

Toward jet R_{AA} in Au+Au collisions

- early Quark Matter 2009 results: pioneering work on jet R_{AA}
- high statistics Run11 Au+Au data at 200 GeV under study
- jets reconstructed using IR safe anti- k_T algorithm with R=0.4
- currently only charged jets (for simplicity)
- minimum constituent cut (p_T^{const}>200 MeV/c for tracks)
- exploratory study on small fraction of data (1%)

Stable unfolding requires each jet candidate to have at least one constituent with p_T greater than a threshold value.

Unfolding of background fluctuations

10

102

10

-10⁻¹ 10⁻²

10-3

ີ 10⁻⁴ ສູ10⁻⁵

 10^{-7}

10°-30

RHIC Kinematics

_{vents} = 1M

Anti-k₊ R = 0.4

_{recojet} > 0.4sr

^{ding} > 0.2 GeV/c

-20

Toy model

10

20

-10

0-5% Central Collisions

(sr c/GeV)

l/2π d^zN/dp_dη

Standard methods:

- Bayesian
- Singular Value Decomposition (SVD)

Methods tested in parallel using a "Toy model" Monte-Carlo

Response matrix measured by embedding simulated "jets" into real events $\rightarrow \delta p_T$

Stable convergence for $p_T^{\text{leading}} > 5 \text{ GeV}/c$, ~20% sensitivity to choice of prior.

- Truth

Measured

30

Open heavy-flavour hadron production

Non-photonic electrons:

(electrons from semi-leptonic heavy flavour hadron decays)

+ easy to trigger

- indirect access to heavy quark kinematics

Direct open charm reconstruction:

+ direct access to heavy quark kinematics

- requires precise vertex tracking detector to suppress background
- difficult to trigger

New high-p_T non-photonic electron data

Open charm production in p+p

FONLL: Fixed Order plus Next-to-Leading Logarithm calculation, μ F = μ R = mc, |y| < 1, *R. Nelson, R. Vogt, A. D. Frawley, arXiv: 1210.4610*

Measurements in p+p provide constraints for the pQCD calculations. D^0 and D* cross section consistent with FONLL upper limit at 200 and 500 GeV.

Open charm production in Au+Au

Charm suppression at RHIC vs LHC

200 GeV

2.76 TeV

Models: He, Fries, Rapp: PRL 110 (2013) 112301 Gossiaux, Aichelin, Bluhm, Gousset, Vogel, Werner arxiv:1207.5445

Same model (He et al.) describes LHC and RHIC data.

Flow effects stronger at RHIC? Steeper initial spectrum

Jana Bielcikova (STAR)

Bottom suppression at RHIC

Measured D and non-photonic electron production allows to access production of b

- peripheral Au+Au collisions: consistent with no suppression.
- minimum bias and central Au+Au collisions: a hint of less suppression than for D⁰

Nuclear modification factor of J/ψ

- R_{AA} decreases with p_T
- at high-p_T (p_T>5 GeV/c): R_{AA}~1 in peripheral, but R_{AA}<1 in central Au+Au
 → clearly a QGP effect
- models including regeneration and color-screening effects describe data well at low-p_T
 Jana Bielcikova (STAR)

Collision energy dependence of J/ψ production

- R_{AA} suppression in Au+Au collisions at 39 and 62 GeV is similar to 200 GeV
- model with direct suppression and regeneration consistent with data

Caution! 39 and 62 GeV p+p reference not measured, instead Color Evaporation Model (CEM) used

Jana Bielcikova (STAR)

v_2 measurement of J/ ψ

STAR, Phys. Rev. Lett. 111 (2013) 52301

 $v_2(J/\psi)$ is sensitive to production mechanisms

 $v_2(J/\psi)$ at $p_T>2$ GeV/*c* consistent with zero

J/ψ is not dominantly produced by coalescence from thermalized charm and anti-charm quarks.

Υ(1S+2S+3S) in Au+Au collisions at 200 GeV

new p+p reference based on Run9 data

Models:

Strickland et al. PRL 107,132301 (2011)

- dynamic model with fireball expansion and feed-down
- assumes T_0 of 428-442 MeV and 1/4π< η/S < 3/4π

Rapp et al. EPJ A 48 (2012) 72

- kinetic rate equation approach in a thermal QGP background
- 2 scenarios:
- binding energy decreases with T (weak binding)
- Gluodissociation of Upsilon (strong binding, not shown)

 Υ (1S+2S+3S) suppression increases with centrality. Data are consistent with a model with complete Υ (2S) and Υ (3S) state suppression.

Summary

- pinning down origin of the ridge and jet-medium interaction
- work in progress on full jet reconstruction in Au+Au collisions. we expect ~2K jets with p_T >50 GeV/c
- strong heavy flavor (D⁰ and NPE) suppression at 200 GeV
- significant J/ ψ suppression at high- $p_T \rightarrow$ clear signal of QGP effects
- J/ψ suppression at lower energies (39 and 62 GeV) similar to 200 GeV
- $\Upsilon(1S+2S+3S)$ suppression in Au+Au 200 GeV consistent with complete $\Upsilon(2S)$ and $\Upsilon(3S)$ suppression
- more quantitative results to come from STAR upgraded by Muon Telescope Detector (MTD) and Heavy Flavor Tracker (HFT) !

Other STAR talks at the workshop: A. Hamed: Direct photon status at STAR experiment, Thursday 15:00 O. Evdokimov: PID-triggered correlations, Saturday 9:00

BACKUP

STAR experiment

- Time Projection Chamber: *dE/dx, PID, momentum*
- Time Of Flight detector: *PID*, $1/\beta$
- Barrel ElectroMagnetic Calorimeter: E/p, trigger
- Endcap ElectroMagnetic Calorimeter ($1.0 \le |\eta| < 2.0$)
- Forward Meson Spectrometer (2.5 < $|\eta|$ < 4.0)
- Forward Time Projection Chambers (2.8 < $|\eta|$ < 3.8)

Momentum (GeV/c)

Full azimuthal acceptance:

0<φ<2π

Pioneering work on jet reconstruction in Au+Au collisions

Early Quark Matter '09 results on Run 7 Au+Au data at 200 GeV

- limited statistics, new methods developed since then

J/ψ production in Au+Au collisions at 200 GeV

Tsallis Blast-Wave model: CPL 30, 031201 (2013); JPG 37, 085104 (2010)

 J/ψ spectra are softer than those of light hadrons a small radial flow?

a significant contribution of the second sec