Measurements of jets in ALICE Christine Nattrass University of Tennessee, Knoxville for the ALICE collaboration

Jets in ALICE

EMCal

- Lead-scintillator sampling calorimeter
- 13 k towers
- Each tower $\Delta \eta X \Delta \phi = 0.014 X 0.014$
- $\sigma(E)/E=0.12/\sqrt{E}+0.02$

EMCal & DCal

$\Delta \eta = 1.4, \Delta \phi = 107^{\circ}$

Installed by Fall 2014 $\Delta\eta=1.4, \Delta\phi=60^{\circ}$

- Lead-scintillator sampling calorimeter
- 13 k towers
- Each tower $\Delta \eta X \Delta \phi = 0.014 X 0.014$
- $\sigma(E)/E=0.12/\sqrt{E}+0.02$

Method

Jet Reconstruction

•Input to the jet finder

- Assumed to be massless
- Charged tracks (ITS+TPC) with $p_{\rm T} > 150 \text{ MeV}/c$
- Cluster energies $E_{cluster} > 300 \text{ MeV}$
- EMCal cluster energies corrected for charged particle contamination with

$$E_{cluster}^{cor} = E_{cluster}^{orig} - f \Sigma p^{Matched}$$
, $E_{cluster}^{cor} \ge 0$

f = 100%

•ALICE measures both Full Jets (tracks + clusters) and charged jets (tracks only)

Oliver Busch 15:55 Friday

Jet Reconstruction

•Jets reconstructed using FastJet package

- R = 0.2 0.4
- Anti- k_{T} Used for signal determination
- k_{T} Used for background determination
- •Correct for detector effects using unfolding
 - Momentum resolution
 - Energy resolution
 - Track Matching

M. Cacciari, G. P. Salam, G.Soyez, JHEP 0804:063,2008

Full Jet Selection Requirements

- •EMCal fiducial acceptance cut
 - *R* away from EMCal boundaries
 - *R*=0.2:
 - $|\eta_{jet}| < 0.5$
 - $1.60 < \phi_{jet} < 2.94$

Jets with leading track $p_T > 100 \text{ GeV}/c$ are rejected due to limitations of tracking beyond 100 GeV/c

Jets in Heavy Ion Collisions Experimental Challenges

- Need to remove underlying event (UE) contribution
 - $p_{T,Jet} = p_{T,Jet}^{rec} \rho A + B_{\sigma}$
 - $A = \text{Jet area}, \rho = \text{median UE momentum density}$
 - $p_{T,Jet}^{rec}$ = Jet p_T from jet finder
 - We can only remove the average background contribution
- • \mathbf{B}_{σ} from UE fluctuations
- Combinatorial (fake) jets can be reconstructed from UE
- Detector effect corrections depend on fragmentation
- Both background and detector effects are corrected in unfolding
 - Corrects spectra for the $B_{_{\sigma}}$ term
- Quantified in Response Matrix (RM)

HI Background Determination Charged Jets $\sqrt{s_{NN}} = 2.76$ TeV in PbPb

- • ρ_{ch} : median of $p_{T,kTjet}^{ch} / A_{kTjet}$
 - 2 leading jets removed
 - May be sensitive to jet fragments outside k_T jet cone
 - Determined event-by-event
- $\bullet \rho_{ch}$ is not corrected for detector effects or missing energy
- •Subtracted from signal jets on a jetby-jet basis

JHEP 1203:053, 2012 (arxiv:1201.2423)

$$p_{T,jet}^{ch,unc} = p_{T,jet}^{rec} - \rho_{ch}A$$

HI Background Determination Full Jets $\sqrt{s_{_{NN}}} = 2.76$ TeV in PbPb

Centrality dependent scale factor accounts for neutral energy

 $\rho_{\text{scaled}} = \rho_{\text{ch}} \times \rho_{\text{EMC}}$

Background Fluctuations Full Jets $\sqrt{s_{_{NN}}} = 2.76$ TeV in PbPb

 δp_{T} is not corrected for detector effects – Experiment specific •Fluctuations in the background determined via $\delta p_{_{T}}$

- Random cones (RC)
- Depends on
 - Constituent cut R
 - Centrality
 - Event plane
 - Detector

$$\delta p_T = p_T^{rec} - \rho \pi R^2$$

 δp_{T} is used to construct unfolding response matrix

Leading Track Jet Bias $\sqrt{s_{NN}} = 2.76 \text{ TeV PbPb}, R=0.2$

Combinatorial "jets"^{10⁻}

Combinatorial jets a challenge in HI collisions

- Require leading track $p_T > 5 \text{ GeV/c}$
- Biases fragmentation
- Suppresses combinatorial "jets"

Measured spectra:

$$p_{T,jet}^{unc} = p_{T,jet}^{rec} - \rho A$$

Where $p_{T,jet}^{rec}, A$
comes from FastJet anti-
 k_T algorithm

Christine Nattrass, christine.nattrass@utk.edu, High PT at LHC 2013

ERF-44496

Response matrix RM_{det}

•RM_{det} quantifies detector response to jets

- "Particle" level jets defined by jet finder on MC particles
- Pythia with Pb-Pb tracking efficiency
- "Detector" level jets defined by jet finder after event reconstruction through GEANT
- Particle level jets are geometrically matched to detector level jets
- Matrix has a dependence on spectral shape and fragmentation

•Jet-finding efficiency is probability of a matched particle level jet

Response Matrix Construction

Christine Nattrass, christine.nattrass@utk.edu, High PT at LHC 2013

ALICE

Jet Resolution

Charged

•Jet resolution

Full

- Dominated by background fluctuations at low momentum
- Dominated by detector effects at high momentum

Results

Full Jet Cross-Section in pp $\sqrt{s} = 2.76$ TeV, R = 0.4 Inclusive arXiv:1301.3475 PLB: 10.1016/j.physletb.2013.04.026 •f = 100%, anti-k₋, R = 0.2, hl<0.5 10⁻³ ALICE pp √s = 2.76 TeV: L_{int} = 13.6 nb⁻¹ $p_{_{\rm T}} > 150 {\rm ~MeV/c}$ Systematic uncertainty **10⁻⁴** $E_{T} > 300 \text{ MeV}$ •Green and magenta bands: NLO (N. Armesto) 10⁻⁶ NLO (G. Soyez) NLO on Parton level NLO + Hadronization (G. Soyez) 10⁻⁷ NLO/data NLO/data •Blue band: NLO + 1.5 hadronization 0.5 Hadronization necessary 1.5 for better fit to data 0.5 p_{T,jet} (GeV/c) 100 20 40 60 80

Full Jet Cross-Section in pp $\sqrt{s} = 2.76$ TeV, R = 0.2, 0.4 Inclusive

Agreement between data and NLO+ hadronization calculations is good for both R = 0.2 and 0.4

Good agreement between data and NLO+ hadronization calculations

ALICE

Full Jet Spectrum in Pb-Pb Charged+EMCal Jets $\sqrt{s_{_{NN}}} = 2.76$ TeV, R=0.2 0-10%

•Jets are corrected for background fluctuations and detector effects in unfolding

Bayesian method

•Systematics:

- ~19% (p_T dependent)
- EMCal effects (Resolution, scale, clusterizer, non-linearity)
- Unfolding
- Tracking efficiency
- Background

- Reference pp spectrum and Pb-Pb spectrum both have leading track $p_T > 5$ GeV/c
- R = 0.2 jets are suppressed in central collisions

•
$$f_{hadcor} = 100\%$$
,

- $p_{_{\rm T}} > 150 \; {\rm MeV/c}$
- $E_{T} > 300 \text{ MeV}$

• ALICE and CMS are consistent within overlap region with the same R and different constituent cuts, background subtraction method and acceptance

LHC Jet R_{AA} Theory Comparisons

Conclusions

Jet in pp consistent with NLO

- Jet R_{AA}
 - Indicates strong suppression of jets
 - Consistent with CMS with same R

Future

- Identified particles in full jets
- Calorimeter triggered jets
 - Reaction plane
 dependence
- DCal for back-to-back full di-jets

Backup

Unfolding Evaluation Closure test

- To benchmark unfolding methods "truth" spectra are embedded into data
 - Do we recover this truth spectrum?
- Embed Pythia jets into Pb-Pb data, at particle level and at detector level
 - Select detector level jets with MC energy "measured jets"
 - Unfold the "measured" jets and compare to embedding particle level jets
 - Tests corrections for both detector effects and background fluctuations
 - Does not test the effect of fake jets

RO

Closure test

R1

- Measured jets are all reconstructed jets with MC energy > 1 GeV
 - Background subtracted
- Unfolded jets are corrected from measured jets
 - RMbkg constructed with RC
 - RMdet constructed with PYTHIA
- Truth is PYTHIA particle level jets

SVD, Bayesian and χ2 minimization

Unfolding Methods

Bayesian

32

V

- Toy model investigation indicates that this method is susceptible to fakes
- Regularization is number of iterations
- Requires a reasonable prior
- Prior is the initial solution for the unfolding method

SVD

- Toy model investigation shows this method performs well
- Tikhonov regularization method suppresses small singular values
- Requires a reasonable prior
- χ2
 - Toy model studies show good agreement with SVD
 - Regularization is employed by assuming a local power law (for jet spectra)
 - Does not have a strong dependence on prior

Comparison to Models $\sqrt{\text{sNN}} = 2.76 \text{ TeV}, \text{R}=0.2,0.3 0-10\%$

PYTHIA used for charged pp reference spectrum for RAA calculation R=0.2,0.3 jets are suppressed in central collisions

Good agreement between JEWEL and inclusive charged jet RAA

33

34

Jet RAA was surprisingly low, though this is reproduced by some models Where is the missing energy? Large angles? Low pT?

35

Unfolded Biased Jet Spectra

k.edu, High PT at LHC 2013