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Abstract. Partonic energy loss in the medium formed in heavy ion collisions results in
significant modifications of jet spectra. Quantitative understanding of these modifications
can constrain models for partonic energy loss in heavy ion collisions. The ALICE detector
is capable of unique measurements of jets due to its low momentum tracking and particle
identification capabilities. The ALICE Electromagnetic Calorimeter (EMCAL) is a key element
for the measurement of fully reconstructed jets in ALICE due to its measurement of neutral
particles and its triggering capabilities. Measurements of fully reconstructed jet spectra and the
nuclear modification factor, RAA, in Pb-Pb collisions at

√

sNN = 2.76 TeV are presented.

1. Introduction

Jets, the collimated sprays of particles created from a fragmenting parton, are an ideal probe of
the hot, dense medium formed in high-energy heavy-ion collisions because hard parton scattering
occurs early in the collision and therefore the scattered partons can interact with the medium.
The production of jets is well understood in the absence of a medium, for example in pp
collisions, and calculable in pQCD. Jets may be modified by the medium by parton energy
loss through gluon brehmsstralung, collisional energy loss, or modification of fragmentation
and hadronization. Studies of jets in heavy ion collisions at both the Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC) have indicated that high momentum
colored probes interact strongly with the Quark Gluon Plasma (QGP). The effects of parton
interactions with the QGP have already been observed [1–6].

The ALICE detector provides unique capabilities due to its low momentum acceptance (pT >
150 MeV/c). This means that measurements of jets with the ALICE detector are less sensitive
to corrections that are dependent on the shape of the fragmentation functions at low momenta
in heavy ion collisions. The particle identification capabilities of the ALICE detector will also
enable novel measurements of jets in heavy ion collisions.

2. The ALICE detector

The ALICE detector [7], shown in Figure 1, is designed for measurements of events with high
track densities with precision detectors focused on studies around midrapidity (|η| < 0.9). The
central detectors are in a 0.5 T magnetic field. The primary detectors used for the reconstruction
of jets are the Inner Tracking System (ITS), the Time Projection Chamber (TPC), and the
Electromagnetic Calorimeter (EMCAL) [8]. The TPC extends from a radius of approximately
85 cm to 250 cm from the beam pipe and when combined with the ITS provides tracking within
|η| < 0.9 with momentum resolution ∆pT /pT ranging from approximately 1% below 10 GeV/c
to 5% at 100 GeV/c for tracks completely contained in the TPC acceptance. The ITS surrounds



Figure 1. The ALICE detector.

the beam pipe and consists of a Silicon Strip Detector (SSD), Silicon Drift Detector (SDD), and
Silicon Pixel Detector (SPD). The EMCAL is a lead scintillator sampling calorimeter covering
|η| < 0.7 and 107◦ in azimuth optimized for studies of jets and capable of triggering on jets.

3. Measurements of jets

There are three steps in the jet reconstruction procedure: identification of jet candidates,
background subtraction, and corrections for energy resolution and energy scale. Jet candidates
are reconstructed using the anti-kT algorithm in FastJet [9, 10]. ALICE reconstructs jets in
two ways, using tracks only [6] and using information from the tracking detectors and from
the EMCAL [11]. The former are called “charged jets” and the latter “full jets.” For full
jet reconstruction, tracks reconstructed using the TPC and ITS with pT > 150 MeV/c and
calorimeter clusters from the EMCAL with Ecluster > 300 MeV/c are used as input for the jet-
finding algorithm. The boost-invariant pT recombination scheme [9] is used, meaning that jet
momentum pT ,jet is the scalar sum of the constituent momenta. Charged particles will deposit
some energy into the EMCAL. This energy needs to be removed to prevent double counting.
Tracks are extrapolated to the EMCAL and then geometrically matched to clusters. The track
momentum is subtracted from the matched clusters, and clusters that fall below 300 MeV after
this correction are discarded. Jet candidates are required to be at least R =

√

∆φ2 +∆η2

away from the EMCAL boundaries. For R=0.2 this corresponds to an acceptance of η < 0.5 in
pseudorapidity and 1.60 < φ < 2.94 in azimuth.

The background subtracted jet pT is given by

pT ,jet = precT ,jet − ρAjet (1)

where precT ,jet is the pT reconstructed from the jet finder, ρ is the average energy density per unit
area and Ajet is the area of the jet. For jet finding algorithms such as anti-kT which reconstruct
jets in cone symmetric in φ and η, Ajet = πR2. Due to the restricted acceptance for full jets, ρ is
calculated from the background from charged jets, ρch. Charged jets are reconstructed using a



random cone, the two jets with the highest pT are excluded, and the median value of precT,jet/Ajet

is used to determine ρch [5]. This is done event-by-event. To calculate ρ from ρch, the ρch is
scaled up by a factor s, ρ = ρch ∗ s. This centrality-dependent factor is the ratio of the charged
plus neutral energy to the charged energy in the event averaged over the event class determined
from data.

The pT ,jet from Eq.(1) still needs to be corrected for detector effects and smearing due to the
fluctuations in the background. The response matrix which describes these effects and is used in
unfolding is separated into a component due to background fluctuations and a component due
to detector effects such as finite track reconstruction efficiency. The response matrix for detector
effects is determined from simulated PYTHIA events run through GEANT. Particle level jets
from the raw PYTHIA events are correlated with detector level jets from PYTHIA+GEANT
and form the detector response matrix [12]. The fluctuations in the background are determined
by the difference between the reconstructed energy and the average background energy given by

δpT = precT,RC − ρπR2 (2)

where R =
√

∆φ2 +∆η2 is the radius of the random cone. The δpT distribution is calculated by
placing cones randomly in the event, and summing up the energy within them, and subtracting
the average energy that should be contained in a cone of that size. The width of this distribution
indicates the size of the background fluctuations. This distribution is used to create the
background response matrix. Unfolding is done using the Bayesian method in the RooUnfold
package [13]. The uncertainty is dominanted by the uncertainty due to the tracking efficiency
and the unfolding algorithm.
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Figure 2. Inclusive pT spectrum of fully reconstructed jets in pp collisions at
√
s = 2.76 TeV

for the anti-kT algorithm with R=0.2 compared to NLO calculations [11].

Measurements of full jets in pp collisions are consistent with pQCD calculations including
hadronization for both R=0.2, show in figure 2, and R=0.4 [11], indicating that the measurement
is well understood theoretically in pp collisions.



To reduce the background in heavy ion collisions, the jet candidate sample is biased by
requiring at least one track with pT > 5 GeV/c. For calculations of the nuclear modification
factor, RAA, this bias is also used in pp collisions.

Full jet spectra in Pb-Pb collisions at
√
sNN = 2.76 TeV are shown in figure 3 for R=0.2.

The nuclear modification factor, RAA, is shown in figure 4. Substantial suppression is observed,
decreasing with pT . These results are consistent with measurements from CMS [3], which were
measured using a similar method, in the kinematic region where the results overlap. These
results are also consistent with the charged particle spectra at the same momenta [14].

ALI-PREL-44221

Figure 3. Inclusive spectrum of
fully reconstructed jets in Pb-Pb
collisions at

√
sNN = 2.76 TeV for

the anti-kT algorithm with R=0.2.
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Figure 4. Inclusive spectrum of
fully reconstructed jet RAA in Pb-
Pb collisions at

√
s = 2.76 TeV for

the anti-kT algorithm with R=0.2.

Future studies will incorporate the Di-jet Calorimeter (DCAL) [15] that is being installed
180◦ from the EMCAL and will cover |η| < 0.7 and 67◦ in azimuth. This will enable triggering
on jets opposite to an energetic deposit such as that expected from a photon or high energy
electron from a heavy flavor decay.
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