Head shock vs Mach cone: azimuthal correlations from 2 to 3 parton processes

M. Elena Tejeda-Yeomans

Universidad de Sonora, México

Alejandro Ayala (ICN-UNAM), Isabel Domínguez (FC-UAS)

9th International Workshop on High-pT Physics at the LHC, 24-28 September 2013, LPSC Grenoble

IWHpTP@LHC 2013

Outline

- A puzzle in angular correlations
- 2 Possible solutions to the puzzle?
- Head shock vs Mach cones
- Our efforts
- 5 Final remarks

2 / 31

IWHpTP@LHC 2013

Image: A match a ma

Puzzle

Azimuthal angular correlations from RHIC (STAR)

STAR NPA **757** (2005): Peak suppressed at $\Delta \phi = \pm \pi$ rad Away-side parton absorbed by medium due to energy loss

IWHpTP@LHC 2013

Puzzle

Azimuthal angular correlations from RHIC (PHENIX)

The *ridge* and *broad away side*: excess yield of correlated particles at $\Delta \phi = 0$ and $\Delta \phi \approx \frac{2\pi}{3}, \frac{4\pi}{3}$ rad

Fluctuations of matter density in colliding nuclei

...give rise to anisotropic flow of partially equilibrated matter

5 / 31

IWHpTP@LHC 2013

Fluctuations of matter density in colliding nuclei

...hydrodynamic descriptions reproduced the double hump structure

IWHpTP@LHC 2013

6 / 31

Guo-Liang Ma and Xin-Nian Wang, PRL 106 (2011)

Other observables

However other observables more consistent with final state effects: In terms of angle with respect to event plane, more matter traversed for out-of-plane direction

Other observables

Double hump appears for out-of-plane correlations (STAR)

IWHpTP@LHC 2013

8 / 31

STAR arXiv:1010.0690 [nucl-ex]

possible solutions

Head shock (wakes) vs Mach cones (shock waves)

white hole: Jannes et al. PRE 83 (2011)

diagram: Torrieri et al. Acta Phys.Polon. B39 (2008)

Head shock (wakes) vs Mach cones (shock waves)

Recently

- interpretation is fragile, since jet-medium interaction produces also a wake whose contribution cannot be ignored [Casalderrey-Solana, Shuryak and Teaney, PoS CFRNC2006, (2006)]
- unlikely that fast moving parton under conditions in HIC (low viscosity, large parton velocity) generates double-hump via Mach cone since energy momentum deposition in the head shock region is strongly forward-peaked [Bouras, El, Fochler, Niemi, Xu and Greiner, PLB**710** (2012)]
- using a realistic multiple-gluon PS produced by in-medium moving parton, overlapping perturbations in very different spatial directions wipe out any distinct Mach cone structure [Neufeld and Vitev, PRC86 (2012)]
- \rightarrow A fast moving parton produces a wake rather than a shock wave for small $\frac{\eta}{s}$

10 / 31

イロト イポト イヨト イヨ

Path length and $2 \rightarrow 2$ vs $2 \rightarrow 3$

Three and two-hadron correlations in $\sqrt{s_{NN}} = 200$ GeV proton-proton and nucleus-nucleus collisions Ayala, Jalilian-Marian, Magnin, Ortiz, Paic, T-Y PRL 104 (2010)

2010 Path length + scenario enhances 3 vs 2 particles: medium induced energy loss on LO $2 \rightarrow \{2, 3\}$ xsecs \rightsquigarrow different geometry for trajectories of 3 as opposed to 2 particles in the final state of A + A collisions, one particle absorbed by the medium, the other one punches through: *double hump*

Hadron correlations from LO MEs + in-medium PFFs

Three-hadron angular correlations in high-energy proton-proton and nucleus-nucleus collisions from pQCD Ayala, Jalilian-Marian, Magnin, Ortiz, Paic, T-Y, PRC 84 (2011) 2011 Numerical study using LO parton matrix elements for $2 \rightarrow 3$ processes and including the effect of in-medium parton energy loss using modified fragmentation functions \rightarrow angular dependence of xsec vs PHENIX data.

M.E. Tejeda-Yeomans (U. de Sonora, México) Azimuthal correlations from $2 \rightarrow 3$

Hadron correlations from Monte Carlo + in-medium PFFs

Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions Ayala, Dominguez, Jalilian-Marian, Magnin, T-Y, PRC 86 (2012)

13 / 31

2012 Monte Carlo approach to study azimuthal correlations in p + p and A + A collisions at mid-rapidity: MadGraph event generator + modified fragmentation function + classification of events \rightsquigarrow azimuthal correlations vs PHENIX data.

Hadron correlations from MC generator + linearized hydro

Head shock vs Mach cone: azimuthal correlations from 2 to 3 parton processes in relativistic heavy-ion collisions Ayala, Dominguez, T-Y PRC 88 (2013)

In a nutshell

2013 Study hadron multiplicity produced by two partons in the away side coming from $2 \rightarrow 3$ processes for the case where their energy momentum is deposited into the medium, using linearized viscous hydrodynamics to compute the medium's response \rightsquigarrow implement into Monte Carlo and generate azimuthal correlations vs PHENIX data.

$2 \rightarrow 2:$ double hump only through shock waves

Single parton moving in plasma with momentum p_T deposits energy as a shock wave.

$2 \rightarrow 3:$ double hump possible with wakes of two away-side partons

Two partons into the medium moving with momentum $p_{1T} + p_{2T} = p_T$ deposit energy, each as a wake (head shock), rather than a shock wave (Mach cone).

IWHpTP@LHC 2013

$2 \to 2 \text{ vs } 2 \to 3$

pQCD supression $2 \rightarrow 3$ supressed by α_S wrt $2 \rightarrow 2$ p_T distribution enhancement $2 \rightarrow 3$ enhanced wrt $2 \rightarrow 2$, on average (same deposited energy) two partons come with lower momentum than one in the away side

$2 \rightarrow 3:$ double hump possible with wakes of two away-side partons

Mimic surface emission of the leading parton together with in-medium energy momentum deposited by the away side partons. Steps:

- 1 generate hard scattering partons: MadGraph $2 \rightarrow 3$ processes leading parton fragments in vacuum (KKP), away partons travel into medium (avg. 6 fm) with dE/dx = 2 GeV
- 2 study how the energy and momentum of hard scattering partons gets transferred to the medium: Linearized hydro

IWHpTP@LHC 2013

- 3 get the particle's multiplicity: Cooper-Frye away side partons that emerge, fragment in vacuum (KKP)
- 4 hadron momentum distribution for leading and associate

Linearized, small viscosity hydro

Medium total energy momentum $T^{\mu\nu}$

$$T^{\mu\nu} = T_0^{\mu\nu} + \delta T^{\mu\nu},$$

 $\delta T^{\mu\nu}$ parton generated perturbation $T_0^{\mu\nu} \mbox{ energy momentum for underlying medium in equilibrium Small deviations from equilibrium hydro equations$

$$\partial_{\mu}\delta T^{\mu\nu} = J^{\nu},$$

$$\partial_{\mu}T_{0}^{\mu\nu} = 0$$

IWHpTP@LHC 2013

19 / 31

 J^{ν} source of disturbance: fast moving parton.

Linearized, small viscosity hydro

Relativistic fluid energy momentum tensor components (small η , null ζ)

$$\begin{split} \delta T^{00} &= \delta \epsilon \\ \delta T^{0i} &= \mathbf{g} \\ \delta T^{ij} &= \delta_{ij} c_s^2 \delta \epsilon - \frac{3}{4} \Gamma_s (\partial^i \mathbf{g}^j + \partial^j \mathbf{g}^i - \frac{2}{3} \delta_{ij} \nabla \cdot \mathbf{g}) \end{split}$$

IWHpTP@LHC 2013

20 / 31

g fast parton momentum density \rightarrow medium $\delta \epsilon$ disturbance energy density $\Gamma_s \equiv \frac{4\eta}{3\epsilon_0(1+c_s^2)}$ sound attenuation length $c_s = \sqrt{1/3}$ speed of sound

M.E.Tejeda-Yeomans (U. de Sonora, México) Azimuthal correlations from $2 \rightarrow 3$

Linearized, small viscosity hydro

Energy momentum equations are easier to be solved in Fourier space

$$\delta \epsilon = \frac{i\mathbf{k} \cdot \mathbf{J} + J^0(i\omega - \Gamma_s k^2)}{\omega^2 - c_s^2 k^2 + i\Gamma_s \omega k^2}$$
$$\mathbf{g}_L = \frac{i\left[\frac{\omega}{k^2}\mathbf{k} \cdot \mathbf{J} + c_s^2 J^0\right]\mathbf{k}}{\omega^2 - c_s^2 k^2 + i\Gamma_s \omega k^2}$$
$$\mathbf{g}_T = \mathbf{g} - \mathbf{g}_L = \frac{i\mathbf{J}_T}{\omega + i\frac{3}{4}\Gamma_s k^2}$$

Image: A match a ma

IWHpTP@LHC 2013

21 / 31

M.E.Tejeda-Yeomans (U. de Sonora, México) Azimuthal correlations from $2 \rightarrow 3$

Energy momentum in-medium deposition by partons

Two away-side partons in $2 \rightarrow 3$ processes deposit energy momentum into medium, so model the current they produce with localized disturbance:

IWHpTP@LHC 2013

22 / 31

$$J^{\nu}(\mathbf{x},t) = \left(\frac{dE}{dx}\right)\delta(\mathbf{x}-\mathbf{u}t)U^{\nu}$$

 $\frac{dE}{dx}$ energy loss per unit length and $U^{\nu} \equiv \gamma(1, \mathbf{u})$ with \mathbf{u} parton velocity Neufeld and Renk, PRC **82** (2010)

Energy momentum deposition ~>> particle distribution

Particle yield at central rapidity (Cooper-Frye):

$$\frac{dN}{dyd\phi}(y=0) = \int_{p_T^{\min}}^{p_T^{\max}} \frac{dp_T \ p_T}{(2\pi)^3} \int d\Sigma_{\mu} p^{\mu} [f(p \cdot u) - f(p_0)]$$

angle between ${\bf g}$ and ${\bf \hat z}{:}~\phi$

constant freeze-out hyper surface $d\Sigma_{\mu}p^{\mu} = d^3r \ p_T$ equilibrium distribution (Boltzmann): $f(p_0) = e^{-p_T/T_0}$

background medium's energy density and temperature: ϵ_0, T_0

Take massless partons, so v = 0.9995c, $\Gamma_s = \frac{1}{3\pi T_0}$ $\eta = \frac{1}{4\pi}$ $T_0 = 350$ MeV and $c_s = \sqrt{1/3}$.

IWHpTP@LHC 2013

Energy momentum deposited by fast partons in medium

$$f(p \cdot u) - f(p_0) \simeq \left(\frac{p_T}{T_0}\right) \left(\frac{\delta\epsilon}{4\epsilon_0} + \frac{\mathbf{g}_y \sin\phi + \mathbf{g}_z \cos\phi}{\epsilon_0(1+c_s^2)}\right) e^{-p_T/T_0}$$

Shape of distribution depends on $G_i \equiv \int d^2 r \ \mathbf{g}_i$

- $G_y > G_z$: $\sin \phi$ two peaks away from $\phi = 0$
- $G_z > G_y$: $\cos \phi$ two peaks close to $\phi = 0$
- $G_z \gg G_y$: peaks become one

Sac

Energy momentum deposited by fast partons in medium

M.E.Tejeda-Yeomans (U. de Sonora, México)

Azimuthal correlations from $2 \rightarrow 3$

IWHpTP@LHC 2013 25 / 31

590

Energy momentum deposited by fast partons in medium

to denotited by fast partons in medium

$2 \rightarrow 3$: two away-side + surface emission of leading

Surface emission of the leading parton together with in-medium energy momentum deposited by the away side one:

IWHpTP@LHC 2013

28 / 31

10 GeV $\leq p_{T,l} \leq 12$ GeV (LHS), 5 GeV $\leq p_{T,a} \leq 6$ GeV (RHS)

Azimuthal correlations: ADTY model vs PHENIX data

Per-trigger azimuthal angular correlations PHENIX 0-20% Au+Au @ 200 GeV vs ADTY Model PRC 88 (2013) arXiv: 1212.1127

Sac

Conclusion

- $2 \rightarrow 3 \text{ vs } 2 \rightarrow 2 \text{ processes in-medium.}$
- Lower production rate compensated by higher momentum space population.
- Energy-momentum deposited in medium described by low viscosity hydro.
- Particles produced along direction of motion of partons (Wakes instead of Mach cones).
- Surface emission of leading particle together with away side partons depositing energy momentum within medium reproduce hadronization systematics of two hadron correlations.

IWHpTP@LHC 2013

Outlook

- realistic scenario: not only surface emmision but also partons traveling towards the fireball produced with larger and lower energies and different directions,
- some partons not depositing all of their energy within the medium and hadronizing outside,
- background is not static: dilution of the medium due to longitudinal expansion, decreasing energy density of the background fluid, resulting in a larger sound attenuation length and therefore a smaller energy momentum deposition within the medium
- not Cooper-Frye but rather a Bjorken-like scenario whereby freeze-out happens over a proper time period which can be related to a temperature interval

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A