

Strangeness production associated to a high-p_T particle in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ALICE

Xitzel Sánchez Castro on behalf of ALICE Collaboration (Institut Pluridisciplinaire Hubert Curien, France)

9th International Workshop on High-p_T Physics at LHC 27th of September, 2013

Outline

- Motivation: Hadronization mechanisms
- ALICE
- Strangeness production
- Two-hadron correlations:
 - V0-hadron: quark and gluon jets
 - Hadron-V0: Λ/K^0_S
- Prospects

Motivation

Is the baryon/meson enhancement a consequence of parton coalescence? (or/and radial flow?)

Hadronization mechanisms

Low pt

Parton coalescence

The hadronization by coalescence requires that two (three) partons from the QGP are close in phase-space to form a meson (baryon).

Parton fragmentation

n = 2 (meson

High p_T

• At high values of p_T, partons are produced from initial hard processes.

leading particle

More hadronization mechanisms

At intermediate p_T:

A more advanced model of coalescence allows for the recombination between partons from jets with partons from the thermalized bulk. [PRL 90, 202302 (2003), Phys.Rev. C73 (2006) 064904 , Phys.Rev. C75 (2007) 054904]

Phys.Rev. C75 (2007) 054904

More hadronization mechanisms

Does the baryon/meson enhancement at intermediate p_T have a contribution from in-medium modification of jet fragmentation?

More hadronization mechanisms

With high- p_T particles we have access to other physics studies:

- The two-particle correlations are sensitive to jet quenching and modification of jet fragmentation.
- It is possible to distinguish between quark and gluon jets due to their associated-hadron production and width [PRL 107, 172001 (2011)]
- There might be a difference between baryon and meson content in quark and gluon jets [OPAL, Eur.Phys.J.C8:241-254,1999]

ALICE

Strangeness in ALICE

The neutral strange hadrons (K^{0}_{S} , Λ) are reconstructed using the kinematical and topological properties of their decays products.

К⁰s → π+π⁻ (B.R. 69.2%) Λ → р π⁻ (B.R. 63.9%)

Single reconstruction technique allows for:

- Reconstruction of both strange mesons and baryons
- Wide transverse momentum range
- Good control of systematic uncertainties

arXiv:1307.5530 [nucl-ex]

Strangeness in ALICE

The spectra were fitted using a blast-wave function, up to: - 1.6 GeV/*c* for K⁰s - 2.5 GeV/*c* for Λ

The ratio of the integrated Λ and K⁰_S yields does not change with centrality

			17.10	
		0-5%		40-60%
Λ	dN/dy	26 ± 3		3.8 ± 0.4
	$p_{\rm T} < 0.6 \; {\rm GeV}/c$ frac.	10%		18%
K_S^0	dN/dy	110 ± 10		14 ± 1
	$p_{\rm T} < 0.4 \; {\rm GeV}/c$ frac.	20%	200	25%
	Ratio $dN/dy \Lambda/K_S^0$	0.24 ± 0.02		0.26 ± 0.03

arXiv:1307.5530 [nucl-ex]

More about Λ/K^0_S

arXiv:1307.5530 [nucl-ex]

-Low p_T

-Described by Hydrodynamical model calculation (up to 2 GeV/*c*) C. Shen, U. Heinz, P. Huovinen and H. Song, Phys. Rev. C 84, 044903 (2011).

- Intermediate p_T -Recombination model

Overestimates the $\Lambda/K_{\rm S}^{0}$ enhancement. V. Greco, C. M. Ko, and I. Vitev, Phys. Rev. C 71 041901 (2005).

-<u>EPOS</u>

Interaction between jets and a hydrodynamical expansion of the system. Qualitatively ok, it reproduces the maximum. K. Werner, Phys. Rev. Lett. 109, 102301 (2012).

- High pT

-<u>Parton fragmentation regime</u> Values are similar to the ones in proton-proton collisions

Two-hadron correlations

Transverse plane XY

$$\Delta \phi = \phi_{\text{Trig}} - \phi_{\text{Assoc}}$$

Longitudinal direction Z

$$\Delta \eta = \eta_{\text{Trig}} - \eta_{\text{Assoc}}$$

Near-side yield extraction

Flow modulated background subtraction:

The production associated to a high- p_T particle can be extracted by subtracting long-range correlations.

<u> η -gap method</u>: selecting the correlated particles in the range of $1.0 < |\Delta \eta| < 1.6$

Assumptions: flow is independent of $\Delta \eta$ and the jet does not contribute to $|\Delta \eta| > 1.0$

V0-hadron correlations

At high-p_T values:

The baryon production in gluon jets is enhanced with respect to quark jets.

Dividing V0-hadron correlations into two samples, K_{S}^{0} -hadron (*leading meson*) and (anti- Λ) Λ -hadron (*leading baryon*) we might be able to study:

- gluon jet enriched sample via (anti) Λ -hadron correlations
- quark/gluon jet sample via K⁰_S-hadron correlations

K^0s -hadron correlations

Trigger particle (K⁰_S): 6 < p_{T,Trig} < 15 GeV/*c* **Associated particle (charged hadrons):** 3 < p_T < p_{T,Trig}

2011 data

Raw correlation in the invariant mass window

Production associated to high-pT K⁰S

Mixed events

Trigger particle (K⁰_S, Λ): 6 < p_{T,Trig} < 15 GeV/*c* Associated particle (charged hadrons): 3 < p_T < p_{T,Trig}

2011 data

Detector acceptance is taken into account in the **mixed event correction**.

The triangular shape in $\Delta \eta$ is due to the limited η acceptance in the detector

Outlook on V0-hadron correlations

Trigger particle (K⁰_S, Λ): 6 < p_{T,Trig} < 15 GeV/*c* **Associated particle (charged hadrons)**: 3 < p_T < p_{T,Trig} 2011 data

After acceptance correction:

Still to be applied: Corrections for single track efficiencies, contamination (from secondary particles), track merging and track splitting.

New topic: Hadron-V0 correlations

We want to understand the origin of the Λ/K^{0}_{S} enhancement by separating these hadrons produced in correlation with a high-p_T particle from their production in the thermalized bulk.

Is the baryon/meson enhancement related to the hadronization mechanisms in the plasma phase or is there also an effect due to jet fragmentation modification in the medium?

Hadron-V0 correlation

Trigger particle: all charged particles within $5 < p_T < 10 \text{ GeV}/c$

Associated particle: K_{S}^{0} and Λ in the range $2 < p_{T} < 7 \text{ GeV}/c$ Detector acceptance is taken into account in the **mixed event correction**.

Hadron-VO: bulk and jet

Trigger particle (charged hadrons): $5 < p_{T,Trig} < 10 \text{ GeV}/c$ Associated particle (K⁰_S): $3 < p_T < 3.5 \text{ GeV}/c$

After all corrections we aim to study:

<u>Jet production</u>: 1) Projection in $\Delta \eta$ 2) Projection in $\Delta \phi$

Bulk production: We can test several samples according to the physics involved: ridge, away-side area.

Prospects

- <u>V0 - charged hadron correlations</u>

- Allows studying the origin of leading K0s and Lambdas.
- Could enable the study of charge dependent energy loss via tagging of gluon and quark jets on a statistical basis.
- First results (not fully corrected) are encouraging.

- Charged hadron - V0 correlations

- It is possible to compare the Λ/K_{0S}^{0} computed with particles in the bulk and the Λ/K_{0S}^{0} obtained with particles associated in principle to a jet.
- This study can help to understand better the origin of the baryon/meson enhancement.
- Analysis is ongoing: results expected soon.

Back Up

Outlook on V0-hadron correlations

Trigger particle (K⁰_S, Λ): 6 < p_{T,Trig} < 15 GeV/*c* **Associated particle (charged hadrons)**: 3 < p_T < p_{T,Trig}

2011 data

Raw correlation in the invariant mass window

Production associated to high-p_T Λ

