What can we learn from modified jets in Heavy Ion collisions?
C.Coleman-Smith
cec24@phy.duke.edu

September 2013

Introduction

- Jets \& Hadrons are suppressed at RHIC
 and the LHC
- Jets gain lose energy and gain (some) transverse momentum from the medium
- Jet interactions are split into elastic and radiative, the strength of each is quantified by a transport coefficient: e-hat and q-hat.
- Measuring or calculating these is a major goal of heavy-ion jet physics
- What does the current zoo of jet observables actually tell us about the physics of quenching?

VNI/BMS Jet Simulation Methodology

VNI/BMS - 2.0, a simple JET transport model

- Partonic transport via the Boltzmann equation. Treats medium and jet on an equal footing.
- Interactions are tree level 2->2 scatterings and final-state radiation. Radiation includes leading order (BDMPS-Z) LPM effect.
- Medium is a box of thermal partonic QGP at a fixed temperature. No expansion!
- Cross sections are screened by Debye mass, computed using the box temperature
- A generated jet is injected, cascade of interacting partons are tracked. Evolution of entire jet is recorded.

$$
p^{\mu} \frac{\partial}{\partial x^{\mu}} F_{k}(x, \mathbf{p})=\sum_{\text {processes }} \mathcal{C}_{i} F
$$

$$
-\Delta E_{\mathrm{BDMPS}}=\frac{\alpha_{s} C_{R}}{8} \frac{\mu^{2}}{\lambda_{g}} L^{2} \log \frac{L}{\lambda_{g}}
$$

Zapp and Wiedemann, LPM Algorithm

- Probabilistic local implementation of coherence, gives rise to an $L^{\wedge} 2$ energy loss.
- Post Inelastic scattering, compute formation time of emitted gluon

- Repeat until formation time expires

$$
\tau_{f}^{(n)}=\frac{2 \omega}{\left(\mathbf{k}_{\perp}+\sum_{i=0}^{n} \mathbf{q}_{\perp}(i)\right)^{2}}
$$

- Quark and gluon propagate freely
- Simulates coherent emission from multiple centers

Zapp K, Wiedemann U. Phys Rev Lett, 103 (2009) JEWEL CCS, S.A.Bass, D.K.Srivastava, hep-ph/1101.4895

Jet Simulation Method: Box Mode

- Insert all partons from each jet into parton cascade box and evolve for a fixed path length.
- Medium is partonic and static, temperature can be fixed for the entire evolution.
- Medium and jet interact on an equal footing, track all resulting partons

A fully controllable brick of QCD matter

Hadronization In VNI/BMS - 2.0

Hadronization In VNI/BMS

100 GeV quark evolved for 4 fm in a box at $\mathrm{T}=350 \mathrm{MeV}$

Hadronization contracts the transverse momentum distribution

Hadronization smooths the longitudinal distribution, peak at $Z=1$ is redistributed

Jet Observables - VNI/BMS - Box Mode

Dijet Simulation Method: Circle Mode

- Vacuum shower evolution takes place in Pythia.
- Sample production vertices uniformly within a circular medium of some radius R. Sample jet paths as length of random chord generated from vertices to edge of medium.
- Insert all partons from each jet into parton cascade box and evolve for sampled path length.
- Medium is partonic and static, temperature is fixed for duration of the evolution.

LHC Dijet Results

Circle Mode + Glauber Vertices can reproduce LHC data reasonably well.

Central collisions (0-10\%)

Both results include detector smearing effect

$$
E_{t}^{\star} \sim N\left(E_{t}, \alpha \sqrt{E_{t}}\right)
$$

Presented at QM 2011

Process Dependence

Partonic Jet R_AA

$$
R_{A A}^{J e t}=\frac{\frac{d N_{A} J_{t}}{d p_{t}}}{\frac{d N_{p p} p_{t}}{d p_{t}}}
$$

- Fixed T = 0.35 MeV, 0-10\% central

Di-jet Asymmetry at RHIC

- Use VNI/BMS to try and understand dependence of A_{j} on:
- Qhat, determined by the medium temperature: $T=250,350 \mathrm{MeV}$
- Distance travelled by the both jets
- Cuts on leading jet energy and cone-radius:

Elead $>20,35,50 \mathrm{GeV}, \mathrm{R}=\{0.2,0.3,0.4\}$

- Interaction mechanism, elastic or elastic+rad
- Setup:
- Di-jets generated by p+p at 200 GeV , with cuts / jet definition applied
- Cuts and jet definition are applied in post-processing

Dijet Asymmetry - Varying Medium Temperature

Increasing medium temperature increases
asymmetry.

Dijet Asymmetry is similar for partonic and hadronic
jets

Dijet Asymmetry - Varying Jet Cone Radius

Increased Cone Radius reduces asymmetry, captures more of the modified jet

RHIC Dijet Asymmetry - Varying Strong Coupling

medium temperature $\mathrm{T}=250 \mathrm{MeV}$

Increasing Strong Coupling increases asymmetry
C.C-S, B.Müller, "What can we learn from Dijet suppression at RHIC", Phys.Rev.C 86 (2012)

RHIC - Jet Shape

Reconstruct jets with Anti-Kt at successively larger cone radii

Jet Shape - 2, varying strong coupling

RHIC-Fragmentation - Longitudinal $z=E_{T} / E_{T, J e t} \cos \Delta R$

Jet Fragmentation - Transverse

$$
J_{T}=E_{T} \sin \Delta R
$$

$$
\begin{gathered}
z=E_{T} / E_{T, \text { Jet }} \cos \Delta R \\
J_{T}=E_{T} \sin \Delta R
\end{gathered}
$$

2d Fragmentation
Narrow modified jet

fragmentation similar to vacuum

What do jet transport coefficients tell us about QGP?

- Jet transport coefficients encode medium density, and kinematic information
- Knowing q-hat and e-hat would allow for true jet tomography, given a set of observed jets from an event one could reconstruct the density profile.
- q-hat measures transverse momentum transfer, e-hat measures longitudinal energy loss

Transverse Kick Initiates Radiative Processes

Recoil -
Elastic Energy Loss

- The ratio of the two coefficients is proportional to the mass of

Thermal Masses for medium partons

- Previous results from VNI/BMS derived from a medium of massless partons
- Interaction cross-sections are always screened by the Debye mass

$$
m_{D}^{2}=\frac{1}{6}\left(2 N_{c}+N_{f}\right) g^{2} T^{2}
$$

- Introduce asymptotic HTL masses for medium partons

$$
m^{2}=k g^{2} T^{2}, \quad k= \begin{cases}\frac{1}{6} N_{c}+\frac{1}{12} N_{f} & \text { gluon } \\ \frac{1}{4} C_{F} & \text { quark }\end{cases}
$$

- Introduce a dimensionless scaling parameter μs to 'dial' medium masses

$$
m^{2}=k \mu_{s}^{2} g^{2} T^{2}
$$

- NB: Medium number density now scales with

$$
\frac{N}{V}=\frac{g T m^{2}}{2 \pi^{2}} K_{2}\left(\frac{m}{T}\right)
$$

masses

C.C-S, B.Müller, "Constituent Mass Dependence of transport coefficients in a quark gluon plasma", hep-ph/1209.3328

Measuring Transport Coefficients in VNI/BMS

- Fix medium temperature $\mathrm{T}=350 \mathrm{MeV}$, run code without radiation or hadronization.
- Run events with quark probes at fixed energies
- Extract q-hat and e-hat from transverse momentum and energy loss accumulated by the probe

$$
\hat{q}=\frac{1}{L} \sum_{i=1}^{N_{\text {coll }}} \Delta p_{T, i}^{2} . \quad \hat{e}=\frac{1}{L} \sum_{i=1}^{N_{\text {coll }}} \Delta E_{i}
$$

- For light probes in a massless medium we expect from pQCD calculations

$$
\begin{aligned}
\hat{q}(T) & =4 \pi C_{R} \alpha_{s}^{2} \mathcal{N}(T) \ln \left(\frac{q_{\max }^{2}}{m_{D}^{2}}+1\right) \\
\mathcal{N}(T) & =\frac{\zeta(3)}{\pi^{2}}\left(2 N_{c}+\frac{3}{2} N_{f}\right) T^{3} \\
\hat{e}(T) & =\frac{4 \pi \alpha^{2} T^{2}}{3}\left(1+\frac{N_{f}}{6}\right) \ln \left(\frac{E T}{m_{D}^{2}}\right)
\end{aligned}
$$

Elastic Energy Loss

Confirms kinematic intuition, higher medium constituent masses recoil less resulting in a lower energy loss
$\mathrm{T}=350 \mathrm{MeV}$, Alpha $=0.3$

Q-hat / E-hat Ratio

- Ratio scales linearly with the medium mass scale $\mu \mathrm{s}$.
- Experimental measurements of qhat and e-hat could provide insight into the nature of the QGP as seen by jets.
- Measurements made at different jet scales may reveal structure in quasi-particle mass spectrum.
- A possible precision measurement of hard probes and the QGP

Dijet Response at RHIC - Aj

Elastic Interactions Only

Dijet Response at RHIC - Subleading Jet Shape

Jet shape is sensitive to elastic energy loss

Conclusions

- RHIC Dijet Asymmetry is sensitive to: strong coupling, medium radius, medium temperature and cone radius. Sometimes this is subtle.
- Modified jets have a softened radial profile (jet shape), partons are scattered transverse to the jet axis, transverse fragmentation profile softened.
- Fragmentation distributions look similar to vacuum for narrow jets, these jets are still strongly modified. Fragmentation of broad jets shows strong modifications over vacuum
- Modified jets retain a hard core that looks like a vacuum jet, surrounded by a soft cloud of radiated and liberated particles.
- Measurements of qhat/ehat ratio could provide insight into the nature of the medium as seen by jets.

How can we use what we know?

$P\left(E^{f}, p_{t}^{f}\right)=\int P\left(E^{f}, p_{t}^{f} \mid E^{I}, p_{t}^{I}, Q^{2}, \rho, L, \ldots\right) P(\rho, L \mid b) P(L \mid b) P(b) P\left(E^{I}, p_{t}^{I}, Q^{2}\right) d \ldots$ Hydro - path length and density encountered
'measured' distributions of modified jets

- Experimental data gives a window into the after effects of the modification process
- How can we extract the maximum information about the modification process from the data?
- Typically people propose a form for the kernel and then attempt to reproduce observables
- Instead propose the most general meta-model for the modification kernel and then restrict the allowed form by requiring consistency with successively more difficult observables. A non-parametric model selection problem

Extras

Leading Parton Energy Loss

Radiation reproduces BDMPS-Z coefficient to 20%.

$$
-\Delta E_{\mathrm{BDMPS}}=\frac{\alpha_{s} C_{R}}{8} \frac{\mu^{2}}{\lambda_{g}} L^{2} \log \frac{L}{\lambda_{g}}
$$

Elastic (open circles) well described by pQCD results. $\quad \Delta E_{\text {elas }} \propto T^{2} L$

$$
\hat{q}=\frac{1}{L} \sum_{i=1}^{N_{\text {coll }}}\left(\Delta p_{\perp, i}\right)^{2}=2.2\left(\mathrm{GeV}^{2} / \mathrm{fm}\right)
$$

Calibration of PCM elastic processes: Bass.S.A et al J.Phys.G37105112 (2010)
Baier et al (BDMPS) Nucl Phys.B478 (1996), B.Zakharov, JETP Lett. 63 (1996),

CMS Photon - Jet Correlation

$$
\begin{array}{r}
E_{T, \gamma}>60 \mathrm{GeV} \\
E_{T, \mathrm{Jet}}>30 \mathrm{GeV}
\end{array} \quad A_{j}=\frac{E_{T, j e t}-E_{T, \gamma}}{E_{T, j e t}+E_{T, \gamma}}
$$

VNI/BMS - 2.0 + Hydro

Keep jetty partons at each time step. Discard 'old' medium partons

VNI/BMS - 2.0 Current + Future Features

- Elastic and Radiative energy loss models, with BDMPS-Z LPM effect
- Lund Stringy Hadronization with full color tracking from the initial generator.
- Fixed medium temperature in simple box mode.
- Event by event hydro background.
- Variable medium constituent masses give control of qhat/ehat ratio.
- Integration with Pythia for hard process generation
- Jet level data analysis built in (and single hard probe)
- Relatively simple user-options
- Modern build system (CMAKE)

Leading Parton Energy Distribution, E=20 GeV

Leading Parton Pt Distribution, E=20 GeV

VNI/BMS Cross-Sections

$\mathrm{g} \mathrm{g} \rightarrow \mathrm{g} \mathrm{g}$	$\frac{9}{2}\left(3-\frac{t u}{s^{2}}-\frac{s u}{t^{2}}-\frac{s t}{u^{2}}\right)$	$\mathrm{q} \mathrm{q}^{\prime} \rightarrow \mathrm{q} \mathrm{q}^{\prime}$	$\frac{4}{9} \frac{s^{2}+u^{2}}{t^{2}}$
$\mathrm{q} \mathbf{g} \rightarrow \mathbf{q} \mathbf{g}$	$-\frac{4}{9}\left(\frac{s}{u}+\frac{u}{s}\right)+\frac{s^{2}+u^{2}}{t^{2}}$	q q ${ }^{\text {bar }} \rightarrow \mathbf{q}^{\prime}$ qbar ${ }^{\prime}$	$\frac{4}{9} \frac{t^{2}+u^{2}}{s^{2}}$
$\mathrm{g} \mathbf{g} \rightarrow \mathrm{q}$ q bar	$\frac{1}{6}\left(\frac{t}{u}+\frac{u}{t}\right)-\frac{3}{8} \frac{t^{2}+u^{2}}{s^{2}}$	$\mathrm{q} \mathrm{g} \rightarrow$ q Y	$-\frac{e_{q}^{2}}{3}\left(\frac{u}{s}+\frac{s}{u}\right)$
$\mathrm{qq} \rightarrow \mathrm{qq}$	$\frac{4}{9}\left(\frac{s^{2}+u^{2}}{t^{2}}+\frac{s^{2}+t^{2}}{u^{2}}\right)-\frac{8}{27} \frac{s^{2}}{t u}$	q q bar \rightarrow g Y	$\frac{8}{9} e_{q}^{2}\left(\frac{u}{t}+\frac{t}{u}\right)$
q q abar \rightarrow q q bar	$\frac{4}{9}\left(\frac{s^{2}+u^{2}}{t^{2}}+\frac{u^{2}+t^{2}}{s^{2}}\right)-\frac{8}{27} \frac{u^{2}}{s t}$	q q bar \rightarrow Y Y	$\frac{2}{3} e_{q}^{4}\left(\frac{u}{t}+\frac{t}{u}\right)$
q q bar \rightarrow g g	$\frac{32}{27}\left(\frac{t}{u}+\frac{u}{t}\right)-\frac{8}{3} \frac{t^{2}+u^{2}}{s^{2}}$		

- Dominant elastic interactions including screening mass

$$
\mu_{D}=\sqrt{\left(2 N_{c}+N_{f}\right) / 6} g T
$$

$$
\begin{aligned}
& \frac{d \sigma^{g g \rightarrow g g}}{d q_{\perp}^{2}}=2 \pi \alpha_{s}^{2} \frac{9}{4} \frac{1}{\left(q_{\perp}^{2}+\mu_{D}^{2}\right)^{2}}, \\
& \frac{d \sigma^{g q \rightarrow g q}}{d q_{\perp}^{2}}=2 \pi \alpha_{s}^{2} \frac{1}{\left(q_{\perp}^{2}+\mu_{D}^{2}\right)^{2}}, \\
& \frac{d \sigma^{q q \rightarrow q q}}{d q_{\perp}^{2}}=2 \pi \alpha_{s}^{2} \frac{4}{9} \frac{1}{\left(q_{\perp}^{2}+\mu_{D}^{2}\right)^{2}},
\end{aligned}
$$

