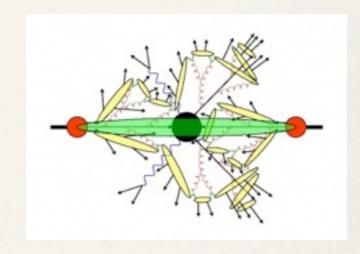


Natural SUSY Les Houches Project

The Project



- * Natural SUSY: light higgsinos, light stops, possibly light sbottoms.
- Gauginos (bino, wino, gluino) can but need not be light.
- Identify all relevant signatures of 3rd generation squarks in this setup.
- Identify the LHC searches applicable to the resulting final states.
- Work out in how far these searches constrain NSUSY in general (beyond SMS's with 100% BR)

The Approach

- Monte Carlo generation with MadGraph
- * Theory side: Implement the relevant ATLAS and CMS searches in MadAnalysis, use Delphes for fast detector simulation

- * Exp. (CMS) side: pass MC events through CMS analyses and CMSfast
- Compare pheno and CMS (and ATLAS?) simulations
- * The best would be a vast scan. However, realistic CPU usage limits us to about 4000 points which should give a good coverage of the NSUSY parameter space.

Tasks

- * Implement stop/sbottom analyses in MadAnalysis
 - Aim: to create an analysis database, to be published via INSPIRE → citable DOIs
 - Problem: validation → need help from experimental colleagues
- * Perform scan with good coverage but no more than 4-5K points
 - * Q: scan over physical masses and mixings or over soft terms (in the end we need mass-vs-mixing angle and mass-vs-mass grids)
- * MC generation: some issues with parton shower matching/merging to be resolved

From the UCSD wiki

Quick orientation of stop and sbottom BRs

pick mu = 200GeV and gain some quick orientation.

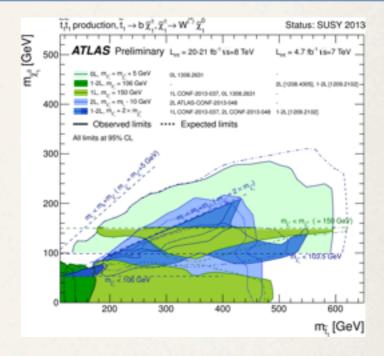
angles in degree. mStop = 477GeV, mSbottom = 536GeV To keep BRs for gluino and sb2 from going into NAN, I stay away from angles that are exactly 0 or 180 degrees. Instead am using costheta = 0.999975 and sintheta = 2.2e-3 or some such.

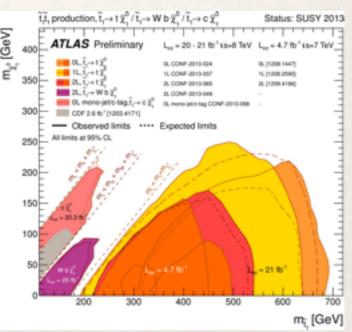
0 0 95.6% 96.8% 4.4% 3.2% 45 0 53% 96.8% 47% 3.2% 90 0 39% 96.8% 61% 3.2% 135 0 58% 96.8% 42% 3.2% 180 0 95.7% 96.8% 4.3% 3.2%	
90 0 39% 96.8% 61% 3.2% 135 0 58% 96.8% 42% 3.2%	
135 0 58% 96.8% 42% 3.2%	
180 0 95.7% 96.8% 4.3% 3.2%	
100 0 33.170 30.070 4.370 3.270	
0 45	
0 90	
45 45	
45 90	
90 45 39% 93% 61% 7%	
90 90 39% 43% 61% 57%	
135 45	
135 90 58% 43% 42% 57%	
180 45	
180 90	

Stops in ATLAS

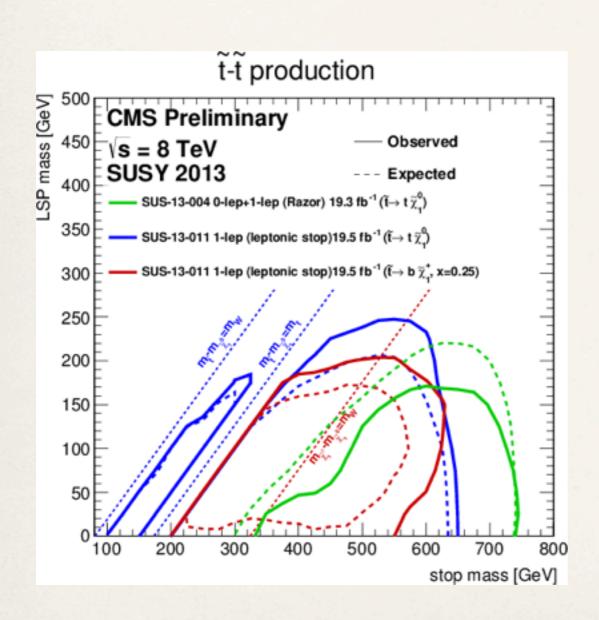
Four decay modes are considered separately with 100% BR: stop1 \rightarrow t+N1 (7 TeV: [1,2,3], 8 TeV [4,5,6], where the stop1 is mostly right), stop \rightarrow c+N1 [7], stop \rightarrow W+b+N1 (3-body decay for m(stop) < m(top)+m(N1), 8 TeV [8]) and stop1 \rightarrow b+C1 with C1->W(*)+N1. In the latter case, various hypotheses on the stop1, C1 and N1 mass hierarchy are used: fixed C1 mass (106 GeV [9,10], 150 GeV [4]), m(C1) \sim 2 × m(N1) [4,8,9,10], fixed Delta M = m(stop1)-m(C1) at 10 GeV [8], and fixed Delta M = m(C1)-(N1) at 5 GeV [11].

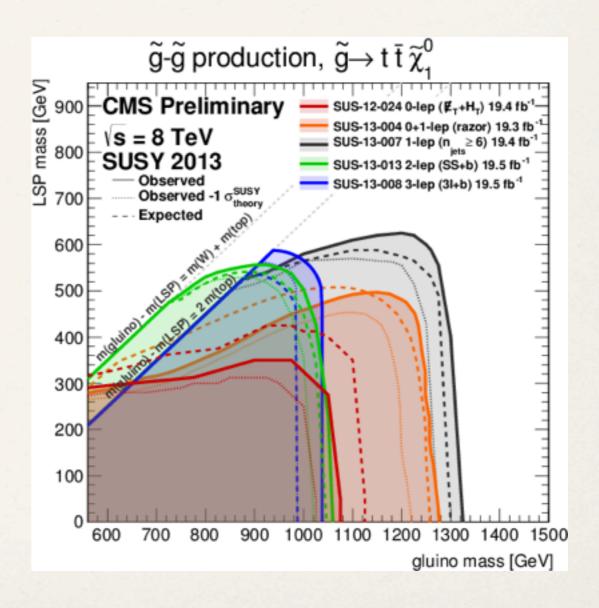
Note that these plots overlay contours belonging to different stop decay channels, different sparticle mass hierarchies, and simplified decay scenarios. Care must be taken when interpreting them.


```
[1] arxiv:1208.1447 (0 lepton, 7 TeV, 4.7 fb<sup>-1</sup>)
```


- [8] ATLAS-CONF-2013-048 (2 lepton, 8 TeV, 20 fb⁻¹)
- [9] arxiv:1208.4305 (very light stop: 2 soft leptons, 7 TeV)

[10] arxiv:1209.2102 (light stop: 1/2 leptons + b-jets, 7 TeV, 4.7 fb⁻¹)


[11] ATLAS-CONF-2013-053 (0 lepton + 2 b-jets + MET, 8 TeV, 20 fb⁻¹)


Status of figure: SUSY 2013

Stops in CMS

Organizational

- * WIFI in this room (today): 191b55
- Coffee, tea biscuits in the theory common room (free)
- Visitors will get an office desk (after lunch)
- * For lunch, please team up in pairs or more to share lunch cards
- Genevieve offers a cake tomorrow p.m.

next: MadAnalysis (Benjamin & Eric)