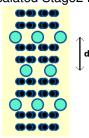
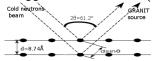

N production Cold beam UCN source UCN spectrum Spectrometer Perspective

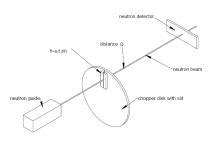
Commissioning of the UCN source for GRANIT


Damien Roulier
PhD Student, Université Joseph Fourier (Grenoble, France)/ILL

Production of UltraCold Neutrons


Monochromator

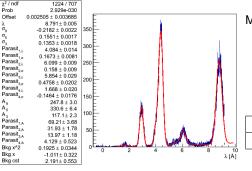
Intercalated Stage2 KC24



Bragg formula : $2d \times \sin(\theta) = n\lambda$

d(Å)	8.74
θ(deg)	30.6
λ(Å)	8.898044

Cold beam characterization


Several time of flight measurements:

- long distance : precise positions of the peaks
- short distance : precise relative intensities of the peaks

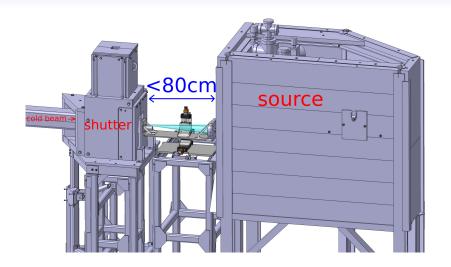
Gold foil activation measurement:

normalization

D. Roulier

Main uncertainties:

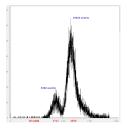
- detector thickness $(\pm 1.3\% \rightarrow \delta \lambda)$
- time resolution (slit opening $\rightarrow \delta \sigma)$


λ (Å)	8.79 ± 0.11
σ (Å)	0.218 ± 0.002

Results in agreement with expectation (8.9Å)

New precision TOF measurement (designed for our beam)

 \Rightarrow increased resolution for 8.9Å peak position and $\sigma.$


5/16

Gold foil activation

Gold foil activation gives an equivalent beam intensity for 1.8Å neutrons of $\Phi_{aold(1.8\text{Å})} = 6.543 \times 10^8 \text{ neutron/cm}^2/\text{s}$ (reactor 48MW)

$$\Phi_{\textit{true}}^{[8.9 \mathring{A}]} = \Phi_{\textit{gold}(1.8 \mathring{A})} \times \frac{1.8 \mathring{A}}{8.9 \mathring{A}} \times \left(\sum_{\lambda \in \textit{peaks}} \frac{\rho_{\lambda}}{\rho_{8.9 \mathring{A}}} \times \frac{\lambda}{8.9 \mathring{A}} \right)^{-1}$$


TOF at closer range: less discrimination between wavelengths for beam divergence ♠ Detector efficiency=f(velocity)

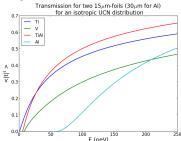
$$\Phi_{lrue}^{[8.9 \mathring{A}]} = \underbrace{(1.1 \pm 0.1) \times 10^8 \text{ n/cm}^2/\text{s}}_{\sigma_{peak} < 0.218 \mathring{A}} \\ \text{Al+Be walls between beam and source : } \\ \times 0.895 \\ \times 0.895 \\ \times 0.895 \\ = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}}_{\text{l} 8.9 \mathring{A}}_{\text{l} 8.9 \mathring{A}} = \underbrace{(1.8 \pm 0.2) \times 10^8 \text{ n/cm}^2/\text{s}\mathring{A}}_{\text{l} 8.9 \mathring{A}}_{\text{l} 8.9 \mathring{A$$

 \rightarrow conversion rate in BeO vessel : $(P = 4.97 \pm 0.38) \times 10^{-8} \times \frac{d\Phi}{d\lambda}|_{8.9\text{\AA}}$ /s/cm³ (P. Schmidt-Wellenburg et al., 2009)

⇒ we produce 45,000 UCN/s in our 5L vessel

UCN flux versus temperature

- T> 1.2K : up-scattering in He-II.
- T< 0.9K: losses on the beryllium walls.


Main problem: radiative heat on He-II when the valve is open.

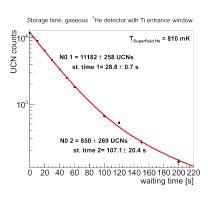
- The source can last a long time at 0.7K (but short valve opening time)
- Measurements are possible at 1.3K (less UCNs, but longer valve opening time)

8/16

Extraction window

Analytical calculation:

Extraction window:


- was 30μm AlMg3
- changed to 15μm Ti (same for our gaseous UCNs detectors)
- transmission tested at PSI (courtesy of B. Lauss) for ≥ 140neV UCNs

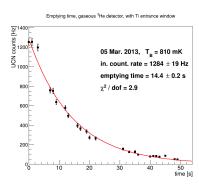
⇒ softer UCNs transmitted and detected

9/16

D. Roulier

UCN storage time

Protocol:


- accumulate UCN in the source (2min)
- 2. close cold beam shutter
- 3. wait x seconds
- 4. release UCNs towards extraction
- 5. integral count

	Ti	Al
τ	30.4 ± 0.7 s	$21.3 \pm 0.4s$

⇒ softer UCNs are available

D. Roulier

UCN emptying time

Protocol:

- accumulate UCN in the source (2min)
- 2. close cold beam shutter
- 3. wait x seconds
- 4. release UCNs towards extraction
- live countrate

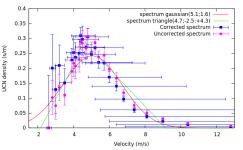

Waiting time (s)	Emptying time (s)
0	14.4 ± 0.2
50	18.6 ± 0.6
100	23.8 ± 1.4

 $\tau_{emptying} < \tau_{storage} \Rightarrow$ the source can work in accumulation mode

UCNs velocity spectrum

Free fall of the UCNs horizontally collimated:

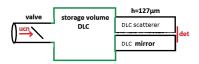
$$h = \frac{g}{2} \left(\frac{d_{freefall}}{v_{UCN}} \right)^2$$


The velocity spectrum is assumed Gaussian or triangular after the collimation, transformed by a simulation of the experiment, then fitted to the measurement.

D. Roulier

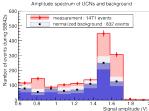
Velocity spectrum reconstruction

Corrections:


- UCN losses in Ar
- Detector geometry (large window size, "shadowing")
- Reflection on detector window (Ti)

The **mean velocity** of our UCNs in this mode is $5.1 \pm 0.1 m/s$, but the spectrum is quite wide.

Collimation \Rightarrow less statistics \Rightarrow valve alway open \Rightarrow no accumulation of soft UCNs \Rightarrow "high" mean velocity


The GRANIT spectrometer: first setup

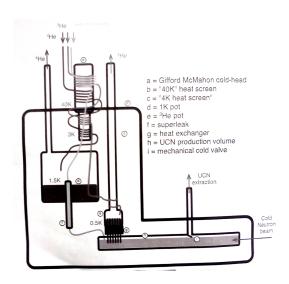
 $T_{source}=1.35K$ $(10.9 \pm 1.5) \times 10^{-3}$ UCN/s at the exit of the extraction slit.

- 10 times less than expected
- background significant (fast neutrons in reactor building)

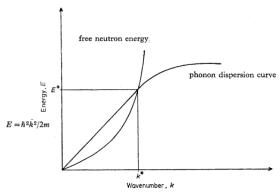
Perspective

Simulations with STARucn (B. Clément):

- show many more UCNs available for measurements (theoretically better source features)
- helped identify possible causes of losses
- helped design improvements

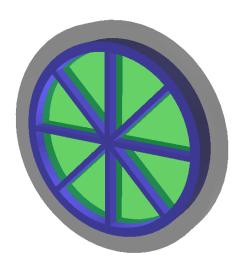

Perspective:

- cold beam : ok, to be confirmed with precise TOF
- cryogenics : more reliable
- conversion volume : to be replaced by sapphire
- extraction : improved, to be replaced by sapphire
- storage volume : to be replaced by copper
- ⇒ with our efforts, we are confident to improve significatively the number of UCNs available for the GRANIT spectrometer

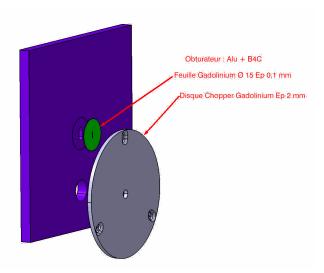

Thank you

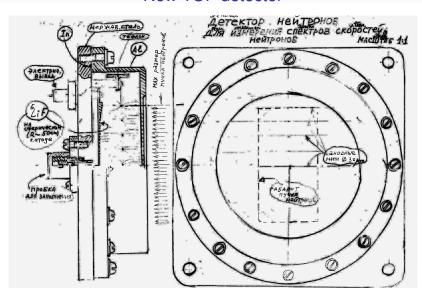
Cryostat

Phonon exchange


Conservation of energy and momentum in coherent scattering of UCN from phonons.

$$P = 4.97 * 10^{-8} \frac{\mathring{A}}{cm} \frac{d\phi}{d\lambda}|_{8.9\mathring{A}}$$


Inside the spectrometer


Holding system for extraction window

New TOF chopper and slit

New TOF detector

