PRECISION CALCULATIONS

FOR DARK MATTER SELF-ANNIHILATION

IN SUPERSYMMETRIC THEORIES

Guillaume CHALONS

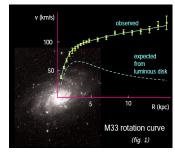
Groupe de Physique Théorique

LPSC Seminar

Based on work in Collaboration with F. Boudjema, N. Baro, C. McCabe, M. J. Dolan, A. Semenov, Sun Hao.

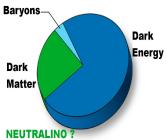
OUTLINE

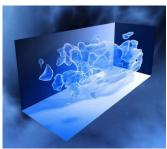
- **1** QUICK SUMMARY OF OUR KNOWLEDGE ABOUT DARK MATTER
- SUPERSYMMETRY AS A POSSIBLE SOLUTION
- RENORMALISATION OF THE MSSM
- APPLICATIONS TO THE COMPUTATION OF THE RELIC DENSITY AT ONE-LOOP
- **5** GAMMA-RAY LINES IN THE NMSSM


OUTLINE

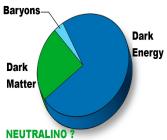
- **1** QUICK SUMMARY OF OUR KNOWLEDGE ABOUT DARK MATTER
- SUPERSYMMETRY AS A POSSIBLE SOLUTION
- RENORMALISATION OF THE MSSM
- APPLICATIONS TO THE COMPUTATION OF THE RELIC DENSITY AT ONE-LOOP
- **5** GAMMA-RAY LINES IN THE NMSSM

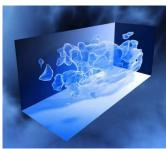
SUMMARY OF OUR (LITTLE) KNOWLEDGE ABOUT DM


- We know that it exists and it is present in galaxies.
- It is cold (non-relativistic at decoupling)
- ► It represents 85% of the matter content (22% of the Universe)
- $m \Omega_\chi h^2 = 0.1199 \pm 0.0027$ at 1σ



SUMMARY OF WHAT WE DON'T KNOW ABOUT DM (A LOT)

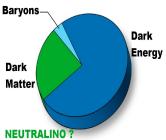

- No informations on exact distribution or local density
- No informations on what is it made of (mass, cross section, spin)

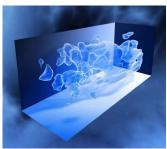

Moreover:

- No existing candidate in SM
- EWSB seems to be related to DM problem

SUMMARY OF WHAT WE DON'T KNOW ABOUT DM (A LOT)

- ► No informations on exact distribution or local density
- ► No informations on what is it made of (mass, cross section, spin)


Moreover:


- No existing candidate in SM
- EWSB seems to be related to DM problem

NEW PARADIGM : DM IS NEW PHYSICS

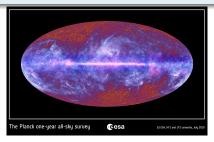
SUMMARY OF WHAT WE DON'T KNOW ABOUT DM (A LOT)

- No informations on exact distribution or local density
- ► No informations on what is it made of (mass, cross section, spin)

Moreover:

- ► No existing candidate in SM
- ► EWSB seems to be related to DM problem

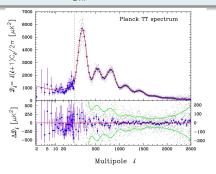
NEW PARADIGM : DM IS NEW PHYSICS


ANY BSM "SHOULD" HAVE A DM CANDIDATE

主

HOW TO EXTRACT $\Omega_{\chi} h^2$

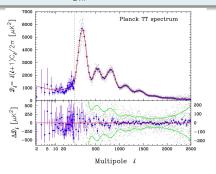
RELIC DENSITY OF DARK MATTER


▶ PLANCK+WMAP: $0.1145 < \Omega_{DM}h^2 < 0.1253$

HOW TO EXTRACT $\Omega_{\chi} h^2$

RELIC DENSITY OF DARK MATTER

► PLANCK+WMAP: $0.1145 < \Omega_{DM}h^2 < 0.1253$



HOW TO EXTRACT $\Omega_{\chi} h^2$

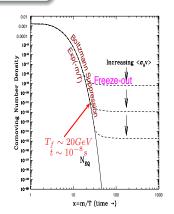
RELIC DENSITY OF DARK MATTER

▶ PLANCK+WMAP: $0.1145 < \Omega_{DM}h^2 < 0.1253$

PRECISION MEASUREMENTS

Must be matched by th. calculations \Rightarrow One-loop

Can be used to constrain cosmological/BSM



STANDARD SCENARIO

THERMAL RELIC DENSITY

► Solve the Boltzmann equation

$$dn/dt = -3Hn - \langle \sigma v \rangle (n^2 - n_{eq}^2)$$

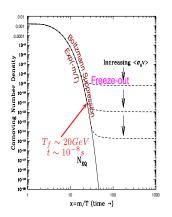
STANDARD SCENARIO

THERMAL RELIC DENSITY

► Solve the Boltzmann equation

$$dn/dt = -3Hn - \langle \sigma v \rangle (n^2 - n_{eq}^2)$$

$$-3Hn \iff \text{dilution}$$


$$n^2 \iff \chi_{\text{SM}} Y_{\text{SM}}$$
 $n_{\text{eq}}^2 \iff X_{\text{SM}} Y_{\text{SM}} \to \chi_{\chi}$

$$n_{\text{eq}} \iff X_{\text{SM}} Y_{\text{SM}} \to \chi \chi$$

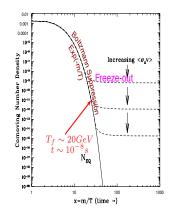
▶ If $m_{\chi'}(NLSP) \simeq m_{\chi}(LSP) \Rightarrow Coannihilation$

$$\chi \chi' \rightarrow X_{SM} Y_{SM}$$

$$\chi'\chi' \rightarrow X_{SM}Y_{SM}$$

 $\chi'\chi' \rightarrow X_{SM}Y_{SM}$

STANDARD SCENARIO


THERMAL RELIC DENSITY

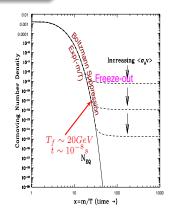
► Solve the Boltzmann equation

$$dn/dt = -3Hn - \langle \sigma v \rangle (n^2 - n_{eq}^2)$$

Thermal average

$$\langle \sigma v \rangle = rac{\displaystyle \sum_{ij} g_i g_j \int_{(m_1+m_2)^2} ds \sqrt{s} \mathcal{K}_1(\sqrt{s}/T) \rho_{ij}^2 \sigma_{ij}(s)}{2T \left(\displaystyle \sum_i g_i m_i^2 \mathcal{K}_2(m_i/T) \right)^2}$$

STANDARD SCENARIO


THERMAL RELIC DENSITY

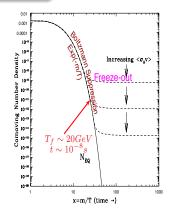
► Solve the Boltzmann equation

$$dn/dt = -3Hn - \langle \sigma v \rangle (n^2 - n_{\rm eq}^2)$$

► Thermal average (Maxwell-Boltzmann approx. x = m/T $x \gtrsim 1$)

$$\langle \sigma v \rangle \propto \int_{0}^{\infty} (\sigma v) v^{2} e^{-xv^{2}/4} dv$$

STANDARD SCENARIO


THERMAL RELIC DENSITY

► Solve the Boltzmann equation

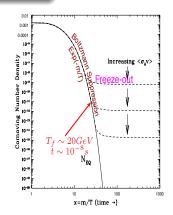
$$dn/dt = -3Hn - \langle \sigma v \rangle (n^2 - n_{eq}^2)$$

▶ Thermal average $(v^2 \simeq 0.1 - 0.3)$

$$\langle \sigma v \rangle = \mathbf{a} + \mathbf{b} \langle v^2 \rangle$$

STANDARD SCENARIO

THERMAL RELIC DENSITY


► Solve the Boltzmann equation

$$dn/dt = -3Hn - \langle \sigma v \rangle (n^2 - n_{eq}^2)$$

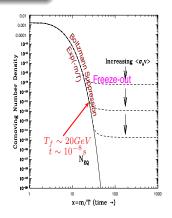
▶ Thermal average $(v^2 \simeq 0.1 - 0.3)$

$$\langle \sigma v \rangle = \mathbf{a} + \mathbf{b} \langle v^2 \rangle$$

• $\Omega h^2 \propto 10^{-10} {
m GeV}^{-2}/\langle \sigma(\chi\chi \to {
m SM}) v \rangle$ (rad. dom. Universe)

STANDARD SCENARIO

THERMAL RELIC DENSITY


► Solve the Boltzmann equation

$$dn/dt = -3Hn - \langle \sigma v \rangle (n^2 - n_{eq}^2)$$

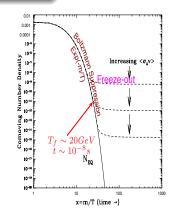
► Thermal average $(v^2 \simeq 0.1 - 0.3)$

$$\langle \sigma v \rangle = \mathbf{a} + \mathbf{b} \langle v^2 \rangle$$

- $\qquad \qquad \Omega h^2 \propto 10^{-10} {\rm GeV}^{-2}/\langle \sigma(\chi\chi \to {\rm SM}) v \rangle \ ({\rm rad.~dom.} \ {\rm Universe})$
- ▶ One loop corrections to $\sigma(\chi\chi\to SM)$ needed for accurate predictions.

STANDARD SCENARIO

THERMAL RELIC DENSITY


► Solve the Boltzmann equation

$$dn/dt = -3Hn - \langle \sigma v \rangle (n^2 - n_{\rm eq}^2)$$

▶ Thermal average $(v^2 \simeq 0.1 - 0.3)$

$$\langle \sigma v \rangle = \mathbf{a} + \mathbf{b} \langle v^2 \rangle$$

- $ho \Omega h^2 \propto 10^{-10} {
 m GeV}^{-2}/\langle \sigma(\chi\chi o {
 m SM}) v
 angle \ ({
 m rad.~dom.}$ Universe)
- ▶ One loop corrections to $\sigma(\chi\chi \to SM)$ needed for accurate predicitons.

WIMP "MIRACLE" :
$$\langle \sigma v \rangle \sim \frac{\alpha^2}{M_{EW}^2} \sim 10^{-9} {\rm GeV}^{-2} \Longrightarrow \boxed{\Omega_\chi h^2 \sim 0.1}$$

PROBLEMS OF THE STANDARD MODEL

- ► The Standard Model seems to be an "incomplete" theory.
- Mechanism for generating mass to particles (

 Electroweak symmetry breaking) yet unknown.
- ▶ Does not explain the instability of the Higgs mass w.r.t higher orders.

$$\delta m_H^2 \supset -\frac{\lambda_f^2}{8\pi^2} \left(\frac{\Lambda^2}{\Lambda^2} - 3m_f^2 \ln \left(\frac{\Lambda}{m_f} \right) + ... \right)$$

- Other masses are protected w.r.t higher orders thanks to a symmetry (chiral for fermions, gauge for vector bosons).
- ▶ No existing symmetry playing the same role for scalar bosons.

PROBLEMS OF THE STANDARD MODEL

- ► The Standard Model seems to be an "incomplete" theory.
- Mechanism for generating mass to particles (

 Electroweak symmetry breaking) yet unknown.
- ▶ Does not explain the instability of the Higgs mass w.r.t higher orders.

$$\delta m_H^2 \supset -\frac{\lambda_f^2}{8\pi^2} \left(\frac{\Lambda^2}{\Lambda^2} - 3m_f^2 \ln \left(\frac{\Lambda}{m_f} \right) + ... \right)$$

- Other masses are protected w.r.t higher orders thanks to a symmetry (chiral for fermions, gauge for vector bosons).
- No existing symmetry playing the same role for scalar bosons.
- ► Cosmology: 26% of matter energy, only 4% identified ⇒ DARK MATTER
- ► SM does not explain the "nature" of **DARK MATTER**, no candidate can explain by itself the present amount of **DM**. ⇒ Need for a new particle.
- DARK MATTER problem seems to be related to the Electroweak symmetry breaking

PROBLEMS OF THE STANDARD MODEL

- ► The Standard Model seems to be an "incomplete" theory.
- Mechanism for generating mass to particles (

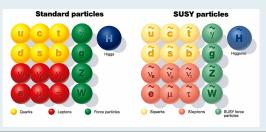
 Electroweak symmetry breaking) yet unknown.
- ▶ Does not explain the instability of the Higgs mass w.r.t higher orders.

$$\delta m_H^2 \supset -\frac{\lambda_f^2}{8\pi^2} \left(\frac{\Lambda^2}{\Lambda^2} - 3m_f^2 \ln \left(\frac{\Lambda}{m_f} \right) + ... \right)$$

- Other masses are protected w.r.t higher orders thanks to a symmetry (chiral for fermions, gauge for vector bosons).
- ▶ No existing symmetry playing the same role for scalar bosons.
- ► Cosmology: 26% of matter energy, only 4% identified ⇒ DARK MATTER
- ► SM does not explain the "nature" of **DARK MATTER**, no candidate can explain by itself the present amount of **DM**. ⇒ Need for a new particle.
- DARK MATTER problem seems to be related to the Electroweak symmetry breaking

NEED FOR NEW PHYSICS

OUTLINE


- QUICK SUMMARY OF OUR KNOWLEDGE ABOUT DARK MATTER
- SUPERSYMMETRY AS A POSSIBLE SOLUTION
- RENORMALISATION OF THE MSSM
- APPLICATIONS TO THE COMPUTATION OF THE RELIC DENSITY AT ONE-LOOP
- **GAMMA-RAY LINES IN THE NMSSM**

SUPERSYMMETRY AND THE MSSM

Supersymmetry (SUSY): a solution for physics beyond the SM

- Symmetry linking Bosons to Fermions.
- Transfer the symmetry properties of fermions to scalar bosons to stabilise the scalar sector.
- ▶ Not yet observed in nature ⇒ Broken symmetry.
- ▶ MSSM: Minimal Supersymmetric Standard Model = $\mathcal{L}_{SUSY} + \mathcal{L}_{soft}$.
- ▶ 2 Higgs doublet \Rightarrow Five Higgs bosons : h, H, H^{\pm}, A^0

NEW PARTICLES

NEW INTERACTIONS

 Hint: Dark Matter cross section resembles the one of a weakly interacting massive particle (WIMP).

$$\Omega_\chi \mathit{h}^2 \simeq rac{3 imes 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v
angle}$$

▶ Weak scale is stabilised by SUSY → Does SUSY offers a DM candidate ?

Hint: Dark Matter cross section resembles the one of a weakly interacting massive particle (WIMP).

$$\Omega_\chi \mathit{h}^2 \simeq rac{3 imes 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma v
angle}$$

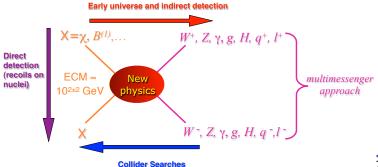
▶ Weak scale is stabilised by SUSY → Does SUSY offers a DM candidate ?

YES if R-parity is conserved (or at least if $au_\chi > au_{\sf Univ.}$)

SUSY CANDIDATES (with R-parity conserved)

Secution Sneutrino $\tilde{\nu}$: Simplest model (left-handed $\tilde{\nu}_L$) ruled out by direct non-detection.

- ▶ Sneutrino $\tilde{\nu}$: Simplest model (left-handed $\tilde{\nu}_L$) ruled out by direct non-detection.
- Gravitino: can be hot/warm/cold DM. Generically too heavy or too light to be detected (LHC Direct/Indirect detection DM). Constrained by BBN.


- ▶ Sneutrino $\tilde{\nu}$: Simplest model (left-handed $\tilde{\nu}_L$) ruled out by direct non-detection.
- Gravitino: can be hot/warm/cold DM. Generically too heavy or too light to be detected (LHC - Direct/Indirect detection DM). Constrained by BBN.
- Axino: SUSY partner of the axion in models with PQ solution to strong CP problem. Very difficult to detect.

- ightharpoonup Sneutrino $\tilde{
 u}$: Simplest model (left-handed $\tilde{
 u}_L$) ruled out by direct non-detection.
- Gravitino: can be hot/warm/cold DM. Generically too heavy or too light to be detected (LHC - Direct/Indirect detection DM). Constrained by BBN.
- Axino : SUSY partner of the axion in models with PQ solution to strong CP problem. Very difficult to detect.
- Neutralino: "Vanilla" MSSM DM candidate. Annihilates weakly into quarks, leptons, gauge & Higgs bosons. Detection depends on the parameter space.

- ▶ Sneutrino $\tilde{\nu}$: Simplest model (left-handed $\tilde{\nu}_L$) ruled out by direct non-detection.
- Gravitino: can be hot/warm/cold DM. Generically too heavy or too light to be detected (LHC - Direct/Indirect detection DM). Constrained by BBN.
- Axino : SUSY partner of the axion in models with PQ solution to strong CP problem. Very difficult to detect.
- Neutralino: "Vanilla" MSSM DM candidate. Annihilates weakly into quarks, leptons, gauge & Higgs bosons. Detection depends on the parameter space.

NEUTRALINO/CHARGINO SECTOR

▶ Mass matrices in the $(\widetilde{B},\widetilde{W}^0,\widetilde{H}_1^0,\widetilde{H}_2^0)$ basis

$$Y = \begin{pmatrix} M_1 & 0 & -c_{\beta} s_w M_Z & s_{\beta} s_w M_Z \\ 0 & M_2 & c_{\beta} c_w M_Z & -s_{\beta} c_w M_Z \\ -c_{\beta} s_w M_Z & c_{\beta} c_w M_Z & 0 & -\mu \\ s_{\beta} s_w M_Z & -s_{\beta} c_w M_Z & -\mu & 0 \end{pmatrix},$$

$$\frac{N}{\sqrt{(\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0)}}$$

NEUTRALINO/CHARGINO SECTOR

Mass matrices in the $(\widetilde{B},\widetilde{W}^0,\widetilde{H}_1^0,\widetilde{H}_2^0)$ basis and $(\widetilde{W}^\pm,\widetilde{H}_{1,2}^\pm)$ one

$$Y = \begin{pmatrix} M_1 & 0 & -c_{\beta}s_wM_Z & s_{\beta}s_wM_Z \\ 0 & M_2 & c_{\beta}c_wM_Z & -s_{\beta}c_wM_Z \\ -c_{\beta}s_wM_Z & c_{\beta}c_wM_Z & 0 & -\mu \\ s_{\beta}s_wM_Z & -s_{\beta}c_wM_Z & -\mu & 0 \end{pmatrix}, \quad X = \begin{pmatrix} M_2 & \sqrt{2}s_{\beta}M_W \\ \sqrt{2}c_{\beta}M_W & \mu \end{pmatrix}$$

$$\frac{M}{\sqrt{\chi_1^0, \chi_2^0, \chi_2^0, \chi_2^0}}$$

NEUTRALINO/CHARGINO SECTOR

▶ Mass matrices in the $(\widetilde{B},\widetilde{W}^0,\widetilde{H}_1^0,\widetilde{H}_2^0)$ basis and $(\widetilde{W}^\pm,\widetilde{H}_{1,2}^\pm)$ one

$$Y = \begin{pmatrix} M_1 & 0 & -c_{\beta}s_WM_Z & s_{\beta}s_WM_Z \\ 0 & M_2 & c_{\beta}c_WM_Z & -s_{\beta}c_WM_Z \\ -c_{\beta}s_WM_Z & c_{\beta}c_WM_Z & 0 & -\mu \\ s_{\beta}s_WM_Z & -s_{\beta}c_WM_Z & -\mu & 0 \end{pmatrix}, \underbrace{X = \begin{pmatrix} M_2 & \sqrt{2}s_{\beta}M_W \\ \sqrt{2}c_{\beta}M_W & \mu \end{pmatrix}}_{\underbrace{U,V}, (\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm})}$$

▶ Diagonalisation + Decomposition \Rightarrow 6 eigenstates/eigenvalues : 4 neutralinos $\tilde{\chi}_i^0$ and 2 charginos $\tilde{\chi}_i^\pm$.

$$\hookrightarrow \boxed{\widetilde{\chi}_1^0 = N_{11}\widetilde{B} + N_{12}\widetilde{W}^0 + N_{13}\widetilde{H}_1^0 + N_{14}\widetilde{H}_2^0} \text{ with } \sum_{i=1}^4 N_{1j}^2 = 1$$

NEUTRALINO/CHARGINO SECTOR

Mass matrices in the $(\widetilde{B}, \widetilde{W}^0, \widetilde{H}_1^0, \widetilde{H}_2^0)$ basis and $(\widetilde{W}^{\pm}, \widetilde{H}_{1,2}^{\pm})$ one

$$\underline{Y} = \begin{pmatrix} M_1 & 0 & -c_{\beta}s_WM_Z & s_{\beta}s_WM_Z \\ 0 & M_2 & c_{\beta}c_WM_Z & -s_{\beta}c_WM_Z \\ -c_{\beta}s_WM_Z & c_{\beta}c_WM_Z & 0 & -\mu \\ s_{\beta}s_WM_Z & -s_{\beta}c_WM_Z & -\mu & 0 \end{pmatrix}, \ \underline{X} = \begin{pmatrix} M_2 & \sqrt{2}s_{\beta}M_W \\ \sqrt{2}c_{\beta}M_W & \mu \end{pmatrix}} \\ \underline{\frac{N}{(\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0)}}$$

Diagonalisation + Decomposition \Rightarrow 6 eigenstates/eigenvalues : 4 neutralinos $\tilde{\chi}_i^0$ and 2 charginos $\tilde{\chi}_i^{\pm}$.

$$\hookrightarrow \boxed{\widetilde{\chi}_1^0 = N_{11}\widetilde{B} + N_{12}\widetilde{W}^0 + N_{13}\widetilde{H}_1^0 + N_{14}\widetilde{H}_2^0} \text{ with } \sum_{i=1}^4 N_{1j}^2 = 1$$

The value of each N_{1j} determine the nature of $\tilde{\chi}_1^0$ and its couplings to other particles.

NEUTRALINO/CHARGINO SECTOR

▶ Mass matrices in the $(\widetilde{B},\widetilde{W}^0,\widetilde{H}_1^0,\widetilde{H}_2^0)$ basis and $(\widetilde{W}^\pm,\widetilde{H}_{1,2}^\pm)$ one

$$\underline{Y = \begin{pmatrix} M_1 & 0 & -c_{\beta}s_WM_Z & s_{\beta}s_WM_Z \\ 0 & M_2 & c_{\beta}c_WM_Z & -s_{\beta}c_WM_Z \\ -c_{\beta}s_WM_Z & c_{\beta}c_WM_Z & 0 & -\mu \\ s_{\beta}s_WM_Z & -s_{\beta}c_WM_Z & -\mu & 0 \end{pmatrix}}, \, \underline{X = \begin{pmatrix} M_2 & \sqrt{2}s_{\beta}M_W \\ \sqrt{2}c_{\beta}M_W & \mu \end{pmatrix}}$$

$$\underline{\frac{N}{(\tilde{\chi}_1^1, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0)}}$$

▶ Diagonalisation + Decomposition \Rightarrow 6 eigenstates/eigenvalues : 4 neutralinos $\tilde{\chi}_i^0$ and 2 charginos $\tilde{\chi}_i^\pm$.

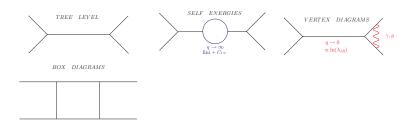
$$\hookrightarrow \boxed{\widetilde{\chi}_1^0 = N_{11}\widetilde{B} + N_{12}\widetilde{W}^0 + N_{13}\widetilde{H}_1^0 + N_{14}\widetilde{H}_2^0} \text{ with } \sum_{i=1}^4 N_{1j}^2 = 1$$

- ▶ The value of each N_{1j} determine the nature of $\tilde{\chi}_1^0$ and its couplings to other particles.
- \blacktriangleright The LSP $\tilde{\chi}^0_1$ can couple to ANY sector of the MSSM
- ▶ → COMPLETE renormalisation needed.

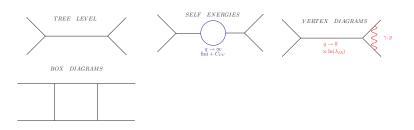
OUTLINE

- **1** QUICK SUMMARY OF OUR KNOWLEDGE ABOUT DARK MATTER
- SUPERSYMMETRY AS A POSSIBLE SOLUTION
- **3** RENORMALISATION OF THE MSSM
- APPLICATIONS TO THE COMPUTATION OF THE RELIC DENSITY AT ONE-LOOP
- **GAMMA-RAY LINES IN THE NMSSM**

DIVERGENCES


▶ Due to perturbative development in the coupling constant.

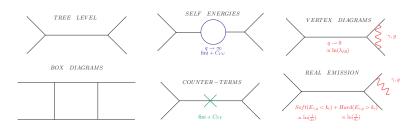
DIVERGENCES


▶ Due to perturbative development in the coupling constant.

DIVERGENCES

▶ Due to perturbative development in the coupling constant.

REGULARISATION


Isolate infinite parts in loops

- ▶ UV: $\ln \Lambda_{UV}$ with cut-off, $1/\epsilon_{UV}$ poles in DR.
- ▶ IR: $\ln \lambda_{IR}$ with cut-off, $1/\epsilon_{IR}$ poles in DR.

DIVERGENCES

▶ Due to perturbative development in the coupling constant.

REGULARISATION

Isolate infinite parts in loops

- ▶ UV: $\ln \Lambda_{UV}$ with cut-off, $1/\epsilon_{UV}$ poles in DR.
- ▶ IR: $\ln \lambda_{IR}$ with cut-off, $1/\epsilon_{IR}$ poles in DR.

RENORMALISATION

$$\mathcal{L}^0 = \mathcal{L}^0(g_i^0, M_{ij}^0, \phi_i^0)$$

SHIFTS

- $ightharpoonup g_i^0
 ightharpoonup g_i + \delta g_i$
- $M_{ij}^{0\,2} \to M_{ij}^2 + \delta M_{ij}^2$

ON-SHELL SCHEME

$$\widetilde{\mathcal{R}e} \hat{\Sigma}_{ii}(M_i^2) = 0 \rightarrow \delta M^2$$

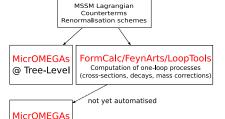
$$\widetilde{\mathcal{R}e} \hat{\Sigma}'_{ii}(M_i^2) = 0 \rightarrow \delta Z_{ii}$$

$$\widetilde{\mathcal{R}e} \hat{\Sigma}_{ij}(M_i^2) = 0 \rightarrow \delta Z_{ij}$$

$$\mathcal{L}^{0} = \mathcal{L}(g_{i}, M_{ij}, \phi_{i}) + \delta \mathcal{L}(g_{i}, M_{ij}, \phi_{i}, \delta g_{i}, \delta M_{ij}, \delta Z_{ij})$$

SECTORS

- ► Fermion
- Gauge
- Higgs
- ► Chargino/Neutralino
- Sfermion



OUTLINE

- **OUICK SUMMARY OF OUR KNOWLEDGE ABOUT DARK MATTER**
- SUPERSYMMETRY AS A POSSIBLE SOLUTION
- RENORMALISATION OF THE MSSM
- APPLICATIONS TO THE COMPUTATION OF THE RELIC DENSITY AT ONE-LOOP
- **GAMMA-RAY LINES IN THE NMSSM**

AUTOMATIC TOOL FOR ONE-LOOP CALCULATIONS: SLOOPS

LanHFP

ST.OOPS

A code for calculation of loops diagrams in the MSSM with application to colliders, astrophysics and cosmology.

- Evaluation of one-loop diagrams including a complete and coherent renormalisation of each sector of the MSSM with an OS scheme.
- ▶ Modularity between different renormalisation schemes.
- ► Non-linear gauge fixing.
- ► Checks: results UV,IR finite and gauge independent.

http://code.sloops.free.fr/

@ One-Loop

ANNIHILATION INTO GAUGE BOSONS: WINO

Baro, Boudjema, GC, Sun Hao, Phys. Rev D81 (2008) 015005

- ▶ Neutralino is wino-like when $M_2 \ll M_1$, $|\mu| \Rightarrow N_{12} \simeq 1$, $N_{1i} = 0$ $i \neq 2$.
- $ightharpoonup m_{ ilde{\chi}_1^0} \simeq m_{ ilde{\chi}_1^\pm}$

NEUTRALINO/CHARGINO SECTOR

▶ Mass matrices in the $(\widetilde{B}, \widetilde{W}^0, \widetilde{H}_1^0, \widetilde{H}_2^0)$ basis and $(\widetilde{W}^\pm, \widetilde{H}_{1,2}^\pm)$ one

$$Y = \begin{pmatrix} M_1 & 0 & -c_{\beta}s_{w}M_{Z} & s_{\beta}s_{w}M_{Z} \\ 0 & M_2 & c_{\beta}c_{w}M_{Z} & -s_{\beta}c_{w}M_{Z} \\ -c_{\beta}s_{w}M_{Z} & c_{\beta}c_{w}M_{Z} & 0 & -\mu \\ s_{\beta}s_{w}M_{Z} & -s_{\beta}c_{w}M_{Z} & -\mu & 0 \end{pmatrix}, X = \begin{pmatrix} M_2 & \sqrt{2}s_{\beta}M_{W} \\ \sqrt{2}c_{\beta}M_{W} & \mu \end{pmatrix}$$

$$\frac{N}{\sqrt{(\tilde{\chi}_{1}^{0}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{3}^{0}, \tilde{\chi}_{4}^{0})}}$$

▶ Diagonalisation + Decomposition \Rightarrow 6 eigenstates/eigenvalues : 4 neutralinos $\tilde{\chi}_i^0$ and 2 charginos $\tilde{\chi}_i^{\pm}$.

$$\hookrightarrow \boxed{\widetilde{\chi}_1^0 = \textit{N}_{11}\widetilde{\textit{B}} + \textit{N}_{12}\widetilde{\textit{W}}^0 + \textit{N}_{13}\widetilde{\textit{H}}_1^0 + \textit{N}_{14}\widetilde{\textit{H}}_2^0} \text{ with } \sum_{j=1}^4 \textit{N}_{1j}^2 = 1$$

ANNIHILATION INTO GAUGE BOSONS: WINO

Baro, Boudjema, GC, Sun Hao, Phys. Rev D81 (2008) 015005

- ▶ Neutralino is wino-like when $M_2 \ll M_1$, $|\mu| \Rightarrow N_{12} \simeq 1$, $N_{1i} = 0$ $i \neq 2$.
- $lacktriangleright m_{ ilde{\chi}_1^0} \simeq m_{ ilde{\chi}_1^\pm}$

In the pure wino limit:

$$\mathcal{L}_{\mathrm{int}} \quad = \quad -\frac{e}{s_{w}} \left(\overline{\tilde{\chi}_{1}^{0}} \cancel{W}^{\dagger} \tilde{\chi}_{1}^{-} + \mathrm{c.c.} \right) + e \frac{c_{w}}{s_{w}} \overline{\tilde{\chi}_{1}^{-}} \cancel{Z} \tilde{\chi}_{1}^{-} + e \overline{\tilde{\chi}_{1}^{+}} \cancel{A} \tilde{\chi}_{1}^{+}$$

DOMINANT ANNIHILATION CHANNELS FOR RELIC DENSITY

- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow W^+ W^-$ (EW corrections)
- $ilde{\chi}_1^0 ilde{\chi}_1^\pm o Z^0 W^\pm$ (EW corrections)
- $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm} \rightarrow W^{\pm} W^{\pm}$ (EW corrections)
- $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \rightarrow W^{\pm} W^{\mp}, Z^0 Z^0$ (EW corrections)
- $ightharpoonup ilde{\chi}_1^0 ilde{\chi}_1^\pm o qar{q}' ext{ (EW+QCD corrections)}$

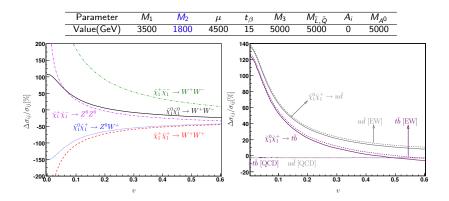
We corrected channels contributing more than 5% to $\Omega_\chi \mathit{h}^2$

HEAVY-WINO NEUTRALINO

Parameter	M_1	M_2	μ	t_{eta}	M_3	$M_{\tilde{L},\tilde{Q}}$	A_i	M_{A^0}
Value(GeV)	3500	1800	4500	15	5000	5000	0	5000
	$ ilde{\chi}_1^0 =$	$= 0.000 ilde{B}$	-0.999	\tilde{W} + 0	$0.004 ilde{H}_{1}^{0}$	$+ 0.032 \tilde{F}$	H_2^0	

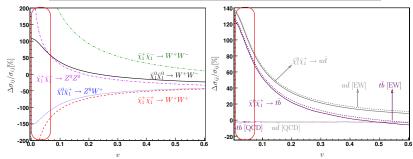
		Tree
$ ilde{\chi}_{1}^{0} ilde{\chi}_{1}^{0} o W^{+} W^{-} \ [10\%]$	а	+2.43
	Ь	+0.52
$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\pm} \to W^{\pm}W^{\pm}$ [10%]	а	+2.44
	Ь	+0.52
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{\pm} \to Z^{0}W^{\pm}$ [9%]	а	+1.02
	Ь	+0.24
$ ilde{\chi}_1^0 ilde{\chi}_1^+ ightarrow t ar{b} \ [9\%]$	а	+1.08
_	Ь	-0.46
$ ilde{\chi}_1^0 ilde{\chi}_1^+ ightarrow u ar{d} [9\%]$	а	+1.08
	Ь	-0.46
$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \to Z^{0}Z^{0}$ [6%]	а	+0.73
	Ь	+0.16
$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \to W^{+}W^{-}$ [6%]	а	+0.65
	Ь	+0.17
$\Omega_{\chi} h^2$		0.0997

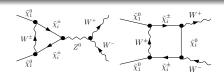
$$m_{\tilde{\chi}_1^0} = 1799.1 \text{ GeV}$$


$$\delta(m_{ ilde{\chi}_1^+} - m_{ ilde{\chi}_1^0}) = 0.0003 \; {
m GeV}$$

$$\sigma_0 v = a + bv^2$$

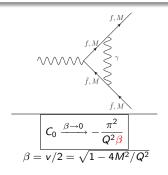
- $lackbox{ } m_{ ilde{\chi}_1^0}$, $m_{ ilde{\chi}_1^\pm}$ almost degenerate
- ► Coannihilation very important
- ▶ Degeneracy between processes $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow W^+ W^-$ and $\tilde{\chi}_1^+ \tilde{\chi}_1^+ \rightarrow W^+ W^+$
- ► A lot of processes contribute


HEAVY-WINO NEUTRALINO



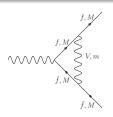
HEAVY-WINO NEUTRALINO

Parameter	M_1	M_2	μ	t_{β}	<i>M</i> ₃	$M_{\tilde{L},\tilde{Q}}$	A_i	M_{A^0}
Value(GeV)	3500	1800	4500	15	5000	5000	0	5000


- $M_W/m_{\widetilde{\chi}_1^0}=0.045\Rightarrow W^\pm, Z^0$ bosons almost considered as massless.
- ▶ $v \rightarrow 0$: Large Sommerfeld (QED+EW) enhancement.

SINGULARITIES IN LOOPS - I: "COULOMB EFFECT"

▶ Singularities arise in scalar triangle C_0 and box D_0 loop integrals when $\beta \to 0$.



- ▶ D_0 has the same infrared behavior because for $\beta \to 0$ it can be split into a sum of triangle integrals.
- ▶ This effect can be resummed to all orders.
- $S_{nr} = X_{nr}/(1 e^{-X_{nr}}) \times \sigma_0 \quad X_{nr} = 2\pi\alpha Q_i Q_i/v$

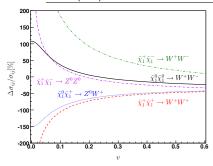
SINGULARITIES IN LOOPS II: EW "COULOMB EFFECT"

Drees, Jie Gu, PRD87 063524

Let us pose $x=|\vec{q}|/|\vec{p}|$ and $\mu=m^2/|\vec{p}|^2$ then

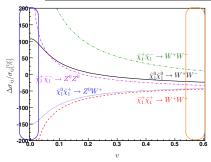
$$C_0^{\text{Som.}} = -\frac{1}{M \cdot m} \frac{\sqrt{\mu}}{2} I_S(\mu) \quad \text{with}$$

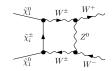
$$I_S(\mu) = \int_0^\infty dx \frac{x}{x^2 - 1} \ln \left[\frac{(x+1)^2 + \mu}{(x-1)^2 + \mu} \right]$$


In the limit of vanishing velocity we have

$$\lim_{\beta \to 0} \mathcal{R}e(C_0^{\text{Som.}}) = -\frac{\pi}{M \cdot m}$$

CHANNELS WITH GAUGE BOSONS IN THE FINAL STATE

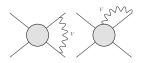

Parameter	M_1	<i>M</i> ₂	μ	t_{β}	<i>M</i> ₃	$M_{\tilde{L},\tilde{Q}}$	Ai	M_{A^0}
Value(GeV)	3500	1800	4500	15	5000	5000	0	5000



CHANNELS WITH GAUGE BOSONS IN THE FINAL STATE

Parameter	M_1	M_2	μ	t_{β}	M_3	$M_{\tilde{L},\tilde{Q}}$	A_i	M_{A^0}
Value(GeV)	3500	1800	4500	15	5000	5000	0	5000

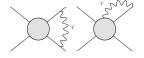
ightharpoonup v
ightharpoonup 1: Large negative corrections of Sudakov type.

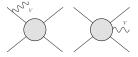


SUDAKOV VIRTUAL CORRECTIONS

- Originate from vertex and box diagrams involving virtual bosons.
- ► General form of one-loop Sudakov corrections

$$\alpha \left[C_2 \ln^2 \left(\frac{s}{M_V^2} \right) + C_1 \ln^1 \left(\frac{s}{M_V^2} \right) + C_0 \right] + \mathcal{O} \left(\frac{M_V^2}{s} \right) \quad V = \gamma, W^{\pm}, Z^0$$
LL


- ▶ The $ln(s/M_V^2)$ represent mass singularities and originate from soft and collinear regions.
- ▶ For QED corrections always present ($M_{\gamma} \rightarrow 0$), for EW ones when $s \gg M_{W,Z}^2$.


SUDAKOV VIRTUAL CORRECTIONS

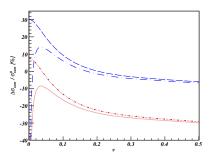
- Originate from vertex and box diagrams involving virtual bosons.
- ► General form of one-loop Sudakov corrections

$$\alpha \left[C_2 \underbrace{ \text{In}^2 \left(\frac{s}{M_V^2} \right)}_{\text{LL}} + C_1 \underbrace{ \text{In}^1 \left(\frac{s}{M_V^2} \right)}_{\text{NLL}} + C_0 \right] + \mathcal{O} \left(\frac{M_V^2}{s} \right) \ V = \gamma, W^{\pm}, Z^0$$

- ▶ The $\ln(s/M_V^2)$ represent mass singularities and originate from soft and collinear regions.
- ▶ For QED corrections always present $(M_{\gamma} \rightarrow 0)$, for EW ones when $s \gg M_{W,Z}^2$.
- ▶ Dependency on M_{γ} unphysical ⇒ removed by adding real emission as stated by the Bloch-Nordsieck theorem [Bloch,Nordsieck(1937)].
- ▶ For EW corrections, $M_{W,Z}$ physical and retained in the calculation.

SUDAKOV VIRTUAL+REAL CORRECTIONS: ABELIAN EXAMPLE

- ▶ Adding real emission of EW gauge boson can counterbalance virtual effects.
- ▶ Abelian $Z' \to \bar{\nu}\nu + Z^0$ (of mass \sqrt{s}) as an example (in the limit $s \gg M_7^2$):

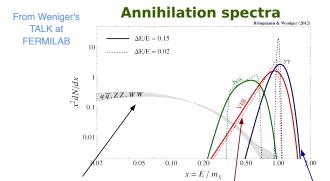

$$\begin{split} & \Gamma^{V}_{\nu\bar{\nu}} = & - & \Gamma^{0}_{\nu\bar{\nu}} \frac{\alpha_{Z}}{4\pi} \left[2 \left(\ln^{2} \left(\frac{m_{Z}^{2}}{s} \right) + 3 \ln \left(\frac{m_{Z}^{2}}{s} \right) \right) - \frac{2\pi^{2}}{3} + 7 \right] \\ & \Gamma^{R}_{\nu\bar{\nu}} = & + & \Gamma^{0}_{\nu\nu} \frac{\alpha_{Z}}{4\pi} \left[2 \left(\ln^{2} \left(\frac{m_{Z}^{2}}{s} \right) + 3 \ln \left(\frac{m_{Z}^{2}}{s} \right) \right) - \frac{2\pi^{2}}{3} + 10 \right] \end{split}$$

- ► Complete compensation between virtual and real logarithmic corrections.
- For our heavy-wino case Sudakov corrections important $(M_W^2/m_{\tilde{\chi}_1^0}^2=2.10^{-3}).$
- ightharpoonup 2
 ightharpoonup 3 to be taken into account for relic density.
- ▶ Real emission of Z⁰ boson added.
- ightharpoonup virtual W^{\pm} emission changes isospin ightharpoonup one state of a mutliplet turned into another state of the same multiplet.
- By summing/averaging over all members of the same multiplet, the cancellation should take place ⇒ Summing over all channels and processes (KLN Theorem).
- $ightharpoonup W^{\pm}$ real emission must also be added to form an isospin singlet.

AVERAGING/SUMMING OVER ISOSPIN/ALL PROCESSES

Virtual + real 2
$$\rightarrow$$
 2 + γ , Z^0 , W^{\pm} .

- ▶ Large corrections for individual processes ⇒ important effect for Indirect Detection
- ► For relic density calculation, in the thermal bath sum over all members of the isospin multiplet automatically done
- ► However due to coannihilation weight (≃ Boltzmann Suppression) violation of KLN in the Early Universe possible (see e.g [Ciafaloni et. al '13])



OUTLINE

- **OUICK SUMMARY OF OUR KNOWLEDGE ABOUT DARK MATTER**
- SUPERSYMMETRY AS A POSSIBLE SOLUTION
- RENORMALISATION OF THE MSSM
- APPLICATIONS TO THE COMPUTATION OF THE RELIC DENSITY AT ONE-LOOP
- **5** GAMMA-RAY LINES IN THE NMSSM

GAMMA-RAY LINES

Continuum emission/ secondary photons

- · often largest component
- · featureless spectrum
- difficult to distinguish from astrophysical background

$$\chi\chi \to \bar{q}q \to \pi^0 \dots$$

 $\pi^0 \to \gamma\gamma$

Internal Bremsstrahlung (IB)

- radiative correction to processes with charged final states
- \bullet Generically suppressed by $O(\alpha)$

$\frac{\chi\chi\to \bar{f}f\gamma}{2}$

Gamma-ray lines

- from two-body annihilation into photons
- forbidden at tree-leve, generically suppressed by $O(\alpha^2)$

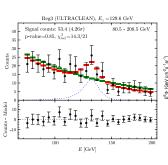
 $\chi\chi \to \gamma\gamma$

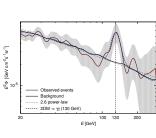
(smoking guns)

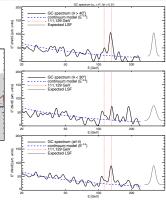
GAMMA-RAY LINES

Theoretically favoured:

- ightharpoonup DM particle annihilation or decay into primary $\gamma + X$ can produce monochromatic gamma rays
- "Smoking gun" signature
- ▶ No known astrophysical source can mimic this signal
- $ightharpoonup \gamma$'s point directly to the source ightharpoonup no propagation uncertainties.
- Give direct information on m_{χ} :


$$\chi\chi \to \gamma\gamma$$
 : $E_{\gamma\gamma} \simeq m_{\chi}$
 $\chi\chi \to \gamma X$: $E_{\gamma X} \simeq m_{\chi} \left(1 - \frac{M_{\chi}^2}{4m_{\chi}^2}\right)$


Experimentally challenging:

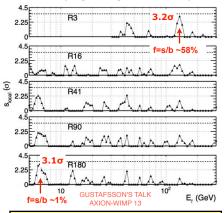

- ► DM is a neutral particle → suppressed process
- ▶ Very small branching ratio (if loop-induced $\mathcal{O}(\alpha^2)$)
- ▶ Difficult to detect from the overwhelming astrophysical background
- ▶ Optimal energy resolution ($\approx 10\%$ at 100 GeV) and calibration very important

"130 GEV LINE" IN THE FERMI-LAT DATA

Weniger JCAP 1208 007

Tempel et. al JCAP 1209 032

Finkbeiner & Su arXiv:1206.1616

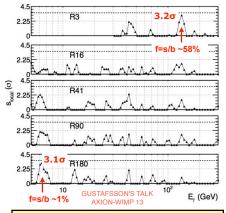

γX	m_{χ} [GeV]	$\langle \sigma v \rangle_{\gamma X} [10^{-27} \text{cm}^3 \text{s}^{-1}]$	$\frac{\langle \sigma v \rangle_{\gamma \gamma}}{\langle \sigma v \rangle_{\gamma X}}$	$\frac{\langle \sigma v \rangle_{\gamma Z}}{\langle \sigma v \rangle_{\gamma X}}$	$\frac{\langle \sigma v \rangle_{\gamma H}}{\langle \sigma v \rangle_{\gamma X}}$
γγ	$129.8 \pm 2.4^{+7}_{-14}$	$1.27 \pm 0.32^{+0.18}_{-0.28}$	1	$0.66^{+0.71}_{-0.48}$	< 0.83
γZ	$144.2 \pm 2.2^{+6}_{-12}$	$3.14 \pm 0.79^{+0.40}_{-0.60}$	< 0.28	1	< 1.08
γH	$155.1 \pm 2.1^{+6}_{-11}$	$3.63 \pm 0.91^{+0.45}_{-0.63}$	< 0.17	< 0.79	1

FERMI OWN DEDICATED REANALYSIS

- ► FERMI-LAT has searched for spectral line from 5-300 GeV : no globally significant lines
- A line-like feature at 133 GeV present with a global significance below 1σ (2.9 σ local).

Local significances in # of sigma (2 σ global sigma dashed line)

No globally significant line detected– All fits have global significance < 1.6σ


FERMI OWN DEDICATED REANALYSIS

- ► FERMI-LAT has searched for spectral line from 5-300 GeV : no globally significant lines
- ► A line-like feature at 133 GeV present with a global significance below 1σ (2.9σ local).

POSSIBLE INTERPRETATIONS

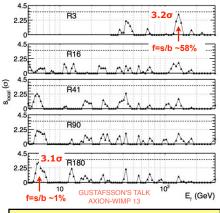
- Instrumental effects (Earth limb, 2D fit)
- rare stat. fluctuation
- ► genuine signal of DM ?

Local significances in # of sigma (2σ global sigma dashed line)

No globally significant line detected – All fits have global significance < 1.6σ

FERMI OWN DEDICATED REANALYSIS

- FERMI-LAT has searched for spectral line from 5-300 GeV: no globally significant lines
- ▶ A line-like feature at 133 GeV present with a global significance below 1σ (2.9 σ local).


POSSIBLE INTERPRETATIONS

- Instrumental effects (Earth limb, 2D fit)
- ▶ rare stat. fluctuation
- ► genuine signal of DM ?

IF DM HUGE IMPACT ON PP

- ▶ DM ann. at rest $\rightarrow E_{\gamma} = m_{\chi}$
- m_χ sets $\not\!\!E_T$ for Colliders
- ▶ target mass for Direct Detection

Local significances in # of sigma (2 σ global sigma dashed line)

No globally significant line detected – All fits have global significance < 1.6σ

In this have global significance 1.00

If DM self-annihilation :

$$\langle \sigma v
angle_{\chi\chi
ightarrow \gamma\gamma} \simeq 1 imes 10^{-27} \, \mathrm{cm^2 s^{-1}}$$

$$\frac{\text{If DM self-annihilation:}}{\langle \sigma v \rangle_{\chi\chi \to \gamma\gamma} \simeq 1 \times 10^{-27} \, \text{cm}^2 \text{s}^{-1}}$$

This is to be compared with canonical value $\boxed{\langle \sigma v \rangle_{\chi\chi} \simeq 3 \times 10^{-26}\, \text{cm}^2 \text{s}^{-1}}$

$$\frac{\text{If DM self-annihilation:}}{\langle \sigma v \rangle_{\chi\chi \to \gamma\gamma} \simeq 1 \times 10^{-27} \, \text{cm}^2 \text{s}^{-1}}$$

This is to be compared with canonical value $\boxed{\langle\sigma v\rangle_{\chi\chi}\simeq 3\times 10^{-26}\,\text{cm}^2\text{s}^{-1}}$

Very bright signal for a supposedly loop-induced process : loop factor = $1/16\pi^2 \sim 6/1000!$

$$\frac{\text{If DM self-annihilation:}}{\langle \sigma v \rangle_{\chi\chi \to \gamma\gamma} \simeq 1 \times 10^{-27} \, \text{cm}^2 \text{s}^{-1}}$$

This is to be compared with canonical value $\boxed{\langle\sigma v\rangle_{\chi\chi}\simeq 3\times 10^{-26}\,\text{cm}^2\text{s}^{-1}}$

Very bright signal for a supposedly loop-induced process : loop factor = $1/16\pi^2 \sim 6/1000!$

Very difficult to account for in the MSSM w/o overshooting indirect detection limits from the continuous γ -ray spectrum ${\it Buchmuller, Garny, Cholis, Tovakoli, Ullio, Cohen et.al; Bélanger et.al...}$

$$\begin{array}{|l|} & \text{If DM self-annihilation:} \\ \hline \langle \sigma v \rangle_{\chi\chi \to \gamma\gamma} \simeq 1 \times 10^{-27} \, \text{cm}^2 \text{s}^{-1} \\ \hline \end{array}$$

This is to be compared with canonical value $\boxed{\langle \sigma v \rangle_{\chi\chi} \simeq 3 \times 10^{-26}\, \text{cm}^2 \text{s}^{-1}}$

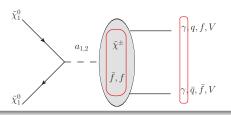
Very bright signal for a supposedly loop-induced process : loop factor = $1/16\pi^2 \sim 6/1000!$

Very difficult to account for in the MSSM w/o overshooting indirect detection limits from the continuous γ -ray spectrum ${\it Buchmuller, Garmy: Cholis, Tovakoli, Ullio: Cohen et.al; Bélanger et.al...}$

SINGLET EXTENSION OF THE MSSM: NMSSM

- ▶ MSSM content extended by 1 singlet superfield S
- More neutralinos (5), more Higgs bosons (6)

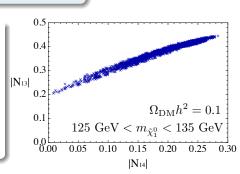
$$\tilde{\chi}_{1}^{0} = N_{11}\widetilde{B} + N_{12}\widetilde{W}^{0} + N_{13}\widetilde{H}_{1}^{0} + N_{14}\widetilde{H}_{2}^{0} + N_{15}\widetilde{S}$$


lacktriangle Possible to have $2m_{\widetilde{\chi}_1^0} pprox m_{a_1^0}$ and evade all existing constraints

GAMMA-RAY LINE IN THE NMSSM

G.C., M.J. Dolan, C. McCabe JCAP 1302 016

Main mechanism


- $ightharpoonup \langle \sigma v \rangle_{\gamma \gamma/Z^0}$ computed with SloopS extended to deal with the NMSSM
- ▶ GI checked thanks to an extended NLG GF for the NMSSM GC,Semenov '11
- ▶ Modified version of L00PT00LS to handle vanishing Gram determinants at v=0 Boudjema, Semenov, Temes '05

EVADING EXISTING CONSTRAINTS

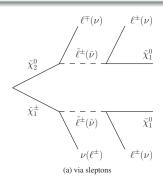
G.C, M.J. Dolan, C. McCabe JCAP 1302 016

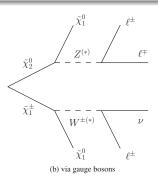
- a_1^0 dominantly singlet \rightarrow no coupling to SM
- $\begin{array}{l} \blacktriangleright \quad \text{We can (almost) boost independently} \\ \langle \sigma v \rangle_{\gamma\gamma} \quad \text{while leaving} \\ \langle \sigma v \rangle_{\chi\chi} = 3 \times 10^{-26} \, \text{cm}^2 \text{s}^{-1} \end{array}$
- ▶ DD evaded using parametric cancellations in $g_{h_i\chi\chi}$ coupling \rightarrow requires $\mu_{\rm eff} \leq 0$.
- Sizeable Higgsino fraction needed for $\Omega_\chi h^2$ (as large as 25%)
- Bino is the dominant component.

Kozaczuk, Profumo, Wainwright PRD87 075011

- Successful EW Baryogenesis
- Strongly first order EWPT

- ▶ Generation of right BAU ($\protect\ensuremath{\mathbb{Z}}\protect\ensuremath{\mathbb{Z}}\protect\ensuremath{\mathsf{Phase}}\protect\ensuremath{\mathsf{G}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{Z}}\protect\ensuremath{\mathsf{D}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{Z}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{Z}}\protect\ensuremath{\mathsf{D}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{Z}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{D}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{D}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensuremath{\mathsf{AU}}\protect\ensuremath{\mathsf{Q}}\protect\ensure$
- OK with EDM

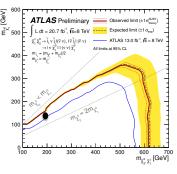

BENCHMARK POINTS

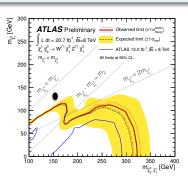

▶ We looked at three benchmark points

Parameter	Well- Tempered	Intermediate- Slepton	λ-SUSY
λ	-0.7	-0.7	-1.5
κ	-0.863	-0.77	-2.19
taneta	4.0	4.0	5.45
A_{λ} [GeV]	-369.9	-378.0	-478.3
A_{κ} [GeV]	75.5	74.95	-55.9
$\mu_{ ext{eff}}$ [GeV]	-150.0	-190.0	-168.0
M_1 [GeV]	135.0	135.5	128.4
$m_{ ilde{\chi}_1^0}$ [GeV]	130.0	133.7	129.9
N_{11}, N_{15}	-0.89, 0.1	0.96, -0.06	0.975, -0.083
N_{13}, N_{14}	0.39, 0.19	-0.26, -0.09	-0.21, 0.012
m_A [GeV]	259.45	267.27	259.33
$\langle \sigma v \rangle_{\gamma\gamma} imes 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}$	1.2	1.1	0.9
$\Omega_{ m DM}h^2$	0.10	0.12	0.11
$\sigma_{ m SI}^{p} imes10^{-45}~{ m cm}^{2}$	1.4	0.23	3.1
$\sigma_{ m SD}^{p} imes 10^{-4}$ pb	5.4	1.4	0.7
$\sigma_{\mathrm{SD}}^{n} imes 10^{-4} \; \mathrm{pb}$	4.2	1.1	0.5
$\langle \sigma v \rangle_{\gamma Z} / \langle \sigma v \rangle_{\gamma \gamma}$	0.64	0.52	0.67
$\Delta a_{\mu} imes 10^{10}$	-1.0 ± 2.9	0.8 ± 2.8	-1.4 ± 2.8

LHC SIGNATURES

- ► Singlet-like a_1^0 does not give interesting collider signature
- ▶ Our benchmarks have large Higgsino fraction \rightarrow light $\tilde{\chi}_2^0, \tilde{\chi}_3^0$ and $\tilde{\chi}_1^{\pm}$.
- ▶ Best prospects for neutralino and chargino production
- ► Most promising signatures are dileptons/trileptons + $\not\!\!E_T$ and intermediate slepton scenario





LHC SIGNATURES

- ▶ Singlet-like a_1^0 does not give interesting collider signature
- ▶ Our benchmarks have large Higgsino fraction \rightarrow light $\tilde{\chi}_2^0, \tilde{\chi}_3^0$ and $\tilde{\chi}_1^{\pm}$.
- ▶ Best prospects for neutralino and chargino production
- ► Most promising signatures are dileptons/trileptons + $\not\!\!E_T$ and intermediate slepton scenario

(b) Decay via gauge bosons

CONCLUSION

- ▶ Importance of radiative corrections DM self-annihilation can be very large.
- Need to control them to be able to extract informations from it and to constrain the underlying cosmological scenario.
- Complete renormalisation of the MSSM achieved and an automatic tool has been developped
- ▶ Including $2 \rightarrow 3$ processes is needed in specific scenarios where the real emission is important.
- One should consider the complete set of corrections (virtual + real) to give a precise result for $\Omega_{\chi}h^2$.
- ► Tentative gamma-ray line investigated in the NMSSM
- Possible to evade all constraints (except $(g-2)_{\mu}$) at the expense of significant amount of fine-tuning
- Benchmarks point could be quickly excluded (thanks to complementarity between LHC and DD next run of LUX)
- Gamma-line signal observation still not confirmed, PASS8 should clarify, HESS-II, CTA, GAMMA400 should tell.

