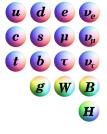
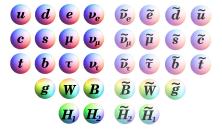
Gauge mediation with a local flavour

Felix Brümmer


partly based on 1312.0935 (with M. McGarrie, A. Weiler)

Outline


- Review: Messenger gauge mediation
- Gauge-mediated models with light 3rd generation squarks
- Flavour gauge messengers: Model building
- 4 Flavour gauge messengers: Consequences
- Conclusions

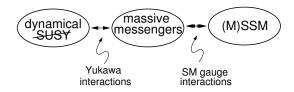
Review: Messenger gauge mediation

The Standard Model of Elementary Particle Physics

The Minimal Supersymmetric Standard Model

Gauge-mediated supersymmetry breaking

- TeV-scale SUSY has many nice features: hierarchy, unification, DM...
- But most general parameterization of SUSY breaking introduces $\mathcal{O}(100)$ new free parameters even in minimal SUSY Standard Model


$$\begin{split} \mathcal{L} = & -\frac{1}{2} \left(M_3 \; \tilde{g} \tilde{g} + M_2 \; \widetilde{W} \widetilde{W} + M_1 \; \widetilde{B} \widetilde{B} + \text{h.c.} \right) \\ & - \left(a_u^{IJ} \; \tilde{u}_I^c \tilde{q}_J H_2 - a_d^{IJ} \; \tilde{d}_I^c \tilde{q}_J H_1 - a_e^{IJ} \; \tilde{e}_I^c \tilde{\ell}_J H_1 + \text{h.c.} \right) \\ & - m_{q\,IJ}^2 \; \widetilde{q}_I^* \widetilde{q}_J - m_{\ell\,IJ}^2 \; \tilde{\ell}_I^* \tilde{\ell}_J - m_{u\,IJ}^2 \; \tilde{u}_I^{c*} \tilde{u}_J^c - m_{d\,IJ}^2 \; \tilde{d}_I^{c*} \tilde{d}_J^c - m_{e\,IJ}^2 \; \tilde{e}_I^{c*} \tilde{e}_J^c \\ & - m_{H_1}^2 \; |H_1|^2 - m_{H_2}^2 |H_2|^2 - \left(m_3^2 \; H_2 H_1 + \text{h.c.} \right) \end{split}$$

• How are SUSY breaking terms generated?

Supertrace theorem: not by tree-level renormalizable couplings to SUSY

- "Gravity mediation": use non-renormalizable interactions / HD operators
- "Gauge mediation": use loops

Messenger gauge mediation

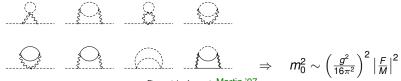
Simplest construction: → Dine/Nelson/Nir/Shirman early '90s

$$W = X \Phi \widetilde{\Phi}$$

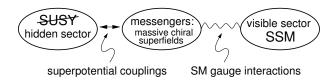
$$\langle X \rangle = M + F\theta^2$$

$$(\Phi,\widetilde{\Phi})\sim {f 5} \oplus \bar{f 5} \ {\sf of} \ {\sf SU}(5)\supset {\it G}_{\sf SM}$$

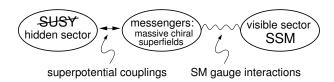
- X = background field: "goldstino superfield"
- M = SUSY mass for scalars and fermions contained in Φ and $\widetilde{\Phi}$
- F = SUSY mass splitting


Minimal messenger gauge mediation

• Messengers $\Phi = \varphi + \sqrt{2}\theta \ \psi + \dots$, $\widetilde{\Phi} = \widetilde{\varphi} + \sqrt{2}\theta \ \widetilde{\psi} + \dots$ $\mathcal{L}_{tree} = -\frac{\textit{M}}{2}(\psi\widetilde{\psi} + \overline{\psi}\overline{\widetilde{\psi}}) - \textit{M}^2(|\varphi|^2 + |\widetilde{\varphi}|^2) - \textit{F}(\varphi\widetilde{\varphi} + \varphi^*\widetilde{\varphi}^*) + \dots$


• Gaugino mass induced @ 1 loop:

• Scalar soft masses induced @ 2 loops:

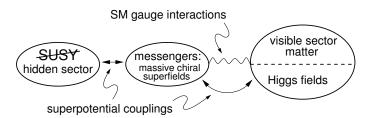


Messenger gauge mediation features

- very few parameters: M, F, (# of $\Phi \oplus \widetilde{\Phi}$ pairs)
- completely renormalizable, well controlled model (no reliance on Planck-scale physics)
- predictions independent on dynamical SUSY details (what generates F and M?)
- flavour-blind SUSY soft terms: no FCNC problems

Messenger gauge mediation bugs

- μ/B_{μ} problem:
 - ullet no higgsino mass μ induced
 - ullet simplest extensions generating μ have too large Higgs mass mixing ${\cal B}_{\mu}$
- embedding in dynamical model nontrivial (R-symmetry / $M_{1/2}$ issues)
- trilinear A-terms small \Rightarrow hard to get $m_h = 125$ GeV in MSSM
- no soft mass for singlets: must be extended to work with NMSSM
- flavour-blind SUSY soft terms: generation-independent squark masses
 Cannot have 3rd generation squarks ≤ 1 TeV
 and 1st two generation squarks above LHC bounds at the same time
 ("natural SUSY" / "effective SUSY" / "inverted hierarchy")


Messenger gauge mediation: Bugs & features

How to fix the bugs (μ/B_{μ} , A-terms, singlet masses, generation universality) without ruining the features (predictivity, calculability, no flavour problem) ?

- To address Higgs sector problems, need extra couplings to Higgs sector
 - \rightarrow next slide
- To address flavour issue, need extra couplings to matter
 - \rightarrow rest of this talk

A nonminimal extension: Gauge-Higgs mediation

Allow for superpotential couplings between messengers and Higgs sector see e.g. model of → Craig/Knapen/Shih '13

- μ, Βμ
- trilinears
- soft terms for singlets
- flavour √>

Aim of this talk

Construct a gauge-mediated model with

- light 3rd generation squarks, heavy and degenerate 1st and 2nd
- FCNCs under control

Crucial ingredients:

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times \frac{SU(3)_F}{2}$ gauge group

Both chiral + gauge messengers

Gauge-mediated models with light 3rd generation squarks

Yukawa-deflected GM / Flavoured GM

→ Chacko/Ponton'02, . . . Shadmi/Szabo '11, Kang et al. '12, Albaid/Babu '12, Abdullah et al. '12, Calibbi/Paradisi/Ziegler '13. Galon/Perez/Shadmi '13. . . .

Introduce also matter-messenger couplings in *W*: generically large flavour violation (can be averted with extra flavour symmetries)

 $\textbf{Example:} \rightarrow \textbf{Abdullah/Galon/Shadmi/Shirman '12}$

$$W = Y_u \ QUH_u + Y_d \ QDH_d + Y_u' \ QU\widetilde{\Phi} + Y_d' \ QD\Psi + X \left(\widetilde{\Phi}\Phi + \widetilde{\Psi}\Psi + \ldots\right)$$

- flavour problems ameliorated if Y_u aligned with Y'_u and Y_d with Y'_d
- tachyonic one-loop contribution to soft masses at order $|Y'_{u,d}|^2 \frac{|F_X|^4}{|X|^6}$ \to Evans/Ibe/Yanagida '12
- for low messenger scales ($F_X \approx X^2$): light 3rd generation squarks

2. Higgsed gauge mediation

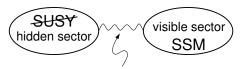
Introduce chiral messengers charged under gauged horizontal symmetry

→ Craig/McCullough/Thaler '12

Example:

- Gauge SU(3)_F with Q, U, D ~ 3
- Yukawa couplings from supersymmetric SU(3)_F breaking: $\Sigma, \Sigma' \sim \bar{\mathbf{6}}$,

$$W = \frac{\Sigma}{\Lambda} Q U H_u + \frac{\Sigma'}{\Lambda} Q D H_d, \qquad \frac{\langle \Sigma \rangle}{\Lambda} = Y_u, \quad \frac{\langle \Sigma \rangle'}{\Lambda} = Y_d$$


SU(3)_F contributes to gauge-mediated soft masses.
 Largest contribution to first two generations
 Light 3rd generation squarks

3. This talk: Flavour gauge messengers

Gauge SU(3)_F and break non-supersymmetrically

- → FB/McGarrie/Weiler '13
 - Some fields charged under SU(3)_F pick up nonzero F-term VEVs
 - Gauge messengers: SUSY breaking mass splittings within massive vector multiplet

vector
Messengers = massive chiral superfields

massive vector multiplets of gauged horizontal symmetry

Negative contributions to squark soft masses.
 Largest for 3rd generation if F-terms aligned with 3rd gen. Yukawas
 Light 3rd generation squarks

Flavour gauge messengers: Model building

Brief history of gauge messengers

- Invented in 1980s GUT model building
 - → Witten's inverted hierarchy '81, Dimopoulos/Raby '83, Kaplunovsky '83,...
- More detailed studies in late '90s (product gauge groups broken to SM)
 - → Dimopoulos et al. '97, Murayama '97, Giudice/Rattazzi '97,...
- Briefly resurrected in 2000s → Dermisek/Kim/Kim '06
- Again of interest in GGM context → Buican/Komargodski '09,Intriligator/Sudano '10
- Also related: Tree-level GM → Nardecchia/Romanino/Ziegler '09

Never very popular for (GUT-)model building (we'll see why)

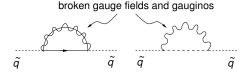
Now use idea for gauged flavour symmetry

A simplistic model

SSM Quark superfields $Q, U, D \sim 3$ under SU(3)_F

Yukawa couplings from $\Sigma, \Sigma' \sim \bar{\mathbf{6}}$, hidden sector: $X \sim \mathbf{3}$

Break $SU(3)_F \rightarrow SU(2)_F$ by


$$\langle X \rangle = \left(\begin{array}{c} 0 \\ 0 \\ F_X \theta^2 \end{array} \right)$$

Simultaneously break $SU(3)_F \rightarrow 0$ by

$$rac{\langle \Sigma
angle}{\Lambda} = \left(egin{array}{ccc} y_u & 0 & 0 \ 0 & y_c & 0 \ 0 & 0 & y_t \end{array}
ight), \qquad \qquad rac{\langle \Sigma'
angle}{\Lambda} = Y_d$$

A simplistic model

- SUSY-breaking X VEV:
 SUSY-breaking mass splittings between gauge fields and gauginos
- Dominant effect: Tachyonic one-loop squark mass² → Intriligator/Sudano '10

 Alignment of X with 3rd generation: largest effect for 3rd generation squarks

$$\delta m_Q^2 = \delta m_U^2 = \delta m_D^2 = -\frac{g_F^2}{16\pi^2} \frac{|F_X|^2}{\Sigma_{33}^2} \left(\begin{array}{ccc} \frac{13}{24} & 0 & 0 \\ 0 & \frac{13}{24} & 0 \\ 0 & 0 & \frac{7}{6} \end{array} \right)$$

• One-loop $SU(3)_F$ tachyon comparable with usual 2-loop GM masses if g_F small

A more realistic model

Previously no explanation for alignment of VEVs or for Yukawa hierarchies

Better: Simple O'Raifeartaigh model

$$W = \kappa Y \left(T\widetilde{T} - f^2 \right) + m\widetilde{X}T + mX\widetilde{T}$$

where $X, T = \mathbf{3}, \qquad \widetilde{X}, \widetilde{T} = \mathbf{\overline{3}}, \qquad Y = \text{singlet}$

For $\kappa f > m$: Vacuum at T = (0, 0, v), $F_X = mT$, $v^2 = f^2 - m^2/\kappa^2$

Top Yukawa now generated by

$$W = \frac{\widetilde{T}\widetilde{T}}{\Lambda^2}QUH_u$$

preserving SU(2)_F subgroup

- For full flavour structure need to break also SU(2)_F at lower scale (independently)
- SUSY breaking aligned with $SU(3)_F \rightarrow SU(2)_F$ breaking by e.o.m.
- "Small SUSY breaking limit", $F_X < v^2$
- On the wishlist: fully dynamical model

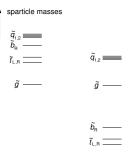
1-loop squark mass from flavour gauge messengers

$$\begin{split} \mathcal{K}_{\text{eff}}^{\text{(1-loop)}} &= \frac{1}{16\pi^2} \operatorname{tr} \left(M_V^2 \log \frac{M_V^2}{\Lambda^2} \right) \\ &= \frac{g_F^2}{16\pi^2} \left(Q_i^\dagger \mathbf{T}_{ij}^{ab} Q_j + U_i^\dagger \mathbf{T}_{ij}^{ab} U_j + D_i^\dagger \mathbf{T}_{ij}^{ab} D_j \right) \times \\ &\times \log \left(\frac{T_i^\dagger \mathbf{T}_{ij} T_j + X_i^\dagger \mathbf{T}_{ij} X_j + \widetilde{T}_i \mathbf{T}_{ij} \widetilde{T}_j^\dagger + \widetilde{X}_i \mathbf{T}_{ij} \widetilde{X}_j^\dagger}{\Lambda^2} \right)^{ab} + \dots \end{split}$$

where $\mathbf{T}^{ab} = \{t^a, t^b\}$ (fundamental generators) and $\langle \widetilde{T} \rangle^{\dagger} = \langle T \rangle = (0, 0, \nu); \qquad \langle \widetilde{X} \rangle^{\dagger} = \langle X \rangle = (0, 0, F_X \theta^2)$

$$\Rightarrow \delta m_Q^2 = \delta m_U^2 = \delta m_D^2 = -\frac{g_F^2}{16\pi^2} \frac{|F_X|^2}{v^2} \begin{pmatrix} \frac{7}{6} & 0 & 0\\ 0 & \frac{7}{6} & 0\\ 0 & 0 & \frac{8}{3} \end{pmatrix}$$

(More general: $m^2=-rac{g_F^2}{16\pi^2}\Delta \emph{c}_2~\Lambda^2
ightarrow$ Intriligator/Sudano '10)



Effect on the superpartner spectrum

Tachyonic contribution to squark masses from flavour gauge messengers:

$$\delta m_{Q,U,D}^2 = -\frac{g_F^2}{16\pi^2} \begin{pmatrix} \frac{7}{6} & 0 & 0\\ 0 & \frac{7}{6} & 0\\ 0 & 0 & \frac{8}{3} \end{pmatrix} \frac{F^2}{M^2}$$

- largest for stops and sbottoms
- if one-loop $SU(3)_F$ effects comparable with two-loop $SU(3)_C \times SU(2)_L \times U(1)_Y$ effects:
 - stop and sbottom masses lowered
 - first- and second-generation squark masses slightly lowered
 - rest of spectrum hardly affected

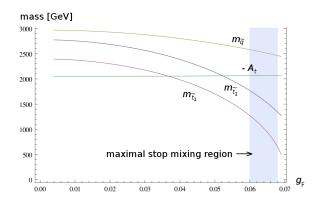
no gauge messengers

with gauge messengers

Effect on the superpartner spectrum

 3rd generation squarks tachyonic at mediation scale, runs positive due to gluino loops
 (cf. also → Dermisek/Kim '06, Dermisek/Kim/Kim '06, Draper et al. '11)

- Can get sub-TeV stops and sbottoms with first-generation squarks above LHC limits
- Can get maximal stop mixing contributions to m_{h0} in MSSM with moderate or zero A_t at mediation scale

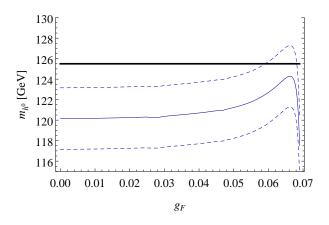

naive prediction of gauge mediation (may not hold if $\mu/B\mu$ generated by Higgs-messenger couplings)

• Can also lift m_{h^0} by extra d.o.f. or non-decoupling effects... flavour gauge messengers really just affect the flavour sector

Light stops and lightest Higgs mass in MSSM

Gaugino and matter soft terms: minimal GMSB + flavour gauge messengers Higgs soft terms: free parameters (gauge-Higgs mediation)

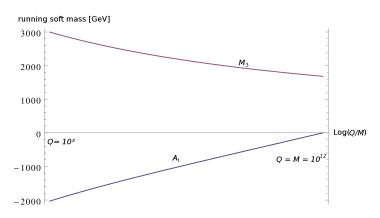
Effect of switching on $SU(3)_F$ gauge coupling:



$$\Lambda_{\rm MGM} = 3 \cdot 10^5 \ {\rm GeV}, \, \textit{M} = 10^7 \ {\rm GeV}, \, \textit{N}_5 = 1, \, \textit{A}_0 = -2 \ {\rm TeV}, \, \textit{m}_{\textit{H}_U}^2 = \textit{m}_{\textit{H}_d}^2 = 10^5 \ ({\rm GeV})^2, \, {\rm tan} \, \beta = 10^5 \ {\rm GeV}$$

Light stops and lightest Higgs mass in MSSM

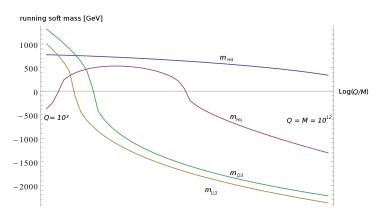
Gaugino and matter soft terms: minimal GMSB + flavour gauge messengers Higgs soft terms: free parameters (gauge-Higgs mediation)


Effect of switching on $SU(3)_F$ gauge coupling:

$$\Lambda_{
m MGM}=3\cdot 10^5~{
m GeV},\, M=10^7~{
m GeV},\, N_5=1,\, A_0=-2~{
m TeV},\, m_{H_U}^2=m_{H_d}^2=10^5~{
m (GeV)}^2,\, aneta=10^5$$

Radiative maximal stop mixing

Example with a high messenger scale ($M=10^{12}$ GeV), radiatively induced A_t , $m_{h^0}=124\pm3$ GeV: similar to \rightarrow Draper/Meade/Reece/Shih '11

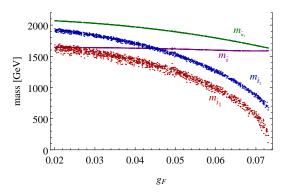


Drawback: uncomfortably large gluino mass \approx 3 TeV

$$\Lambda_{\rm MGM} = 1.5 \cdot 10^5 \ {\rm GeV}, \, M = 10^{12} \ {\rm GeV}, \, N_5 = 3, \, A_0 = 0, \, m_{H_U}^2 = -1.8 \cdot 10^6 \ ({\rm GeV})^2, \, m_{H_d}^2 = 10^5 \ ({\rm GeV})^2, \, g_F = 0.15, \, \tan \beta = 10$$

Radiative maximal stop mixing

Example with a high messenger scale ($M=10^{12}$ GeV), radiatively induced A_t , $m_{h^0}=124\pm3$ GeV: similar to \rightarrow Draper/Meade/Reece/Shih '11



Drawback: uncomfortably large gluino mass \approx 3 TeV

$$\Lambda_{\rm MGM} = 1.5 \cdot 10^5 \text{ GeV}, M = 10^{12} \text{ GeV}, N_5 = 3, A_0 = 0, m_{H_U}^2 = -1.8 \cdot 10^6 (\text{GeV})^2, m_{H_d}^2 = 10^5 (\text{GeV})^2, q_F = 0.15, \tan \beta = 10$$

Gauge messengers in NMSSM

Similar picture:

(using SPheno → Porod '03 and SARAH → Staub '08)

- scan over Higgs sector parameters, requiring $m_{h^0} = 125.5 \pm 3 \text{ GeV}$
- gauge mediation parameters held fixed

Model building: Flavour symmetry breaking

Non-universal gauge messenger contribution to squark masses is diagonal only in one particular flavour basis

Rotating to SCKM basis ⇒ off-diagonal squark masses ⇒ FCNCs

Model dependent

Simple example: Break $SU(2)_F \rightarrow 0$ with extra VEVs

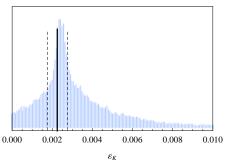
$$\langle S \rangle = (0, u, w), \qquad \langle \widetilde{S} \rangle^{\dagger} = e^{i\phi} \langle S \rangle$$

Treat all fields as spurions; impose discrete symmetry; take $|w| \sim |u| \ll |v|$

$$W = \frac{\widetilde{T}_i \widetilde{T}_j}{\Lambda^2} Q_i U_j H_u + \frac{\widetilde{S}_i \widetilde{S}_j}{\Lambda^2} Q_i U_j H_u + \ldots + \frac{S_i \widetilde{T}_i S_j \widetilde{T}_j T_k S_l T_n S_q}{\Lambda^8} \epsilon_{klm} \epsilon_{npq} Q_m U_q H_u$$

induces realistic up-type Yukawa matrix if $|w|/|v| \sim |u|/|v| = \epsilon \approx 0.1$ Non-abelian Froggatt-Nielsen model

Down-type Yukawas similar


Model building: Flavour symmetry breaking

Mass and CKM hierarchies roughly reproduced, e.g.

$$V_{
m CKM} \sim \left(egin{array}{ccc} 1 & \epsilon & \epsilon^2 \ \epsilon & 1 & \epsilon \ \epsilon^2 & \epsilon & 1 \end{array}
ight)$$

although V_{us} , V_{cb} a bit too small

Flavour constraints: mostly from $\Delta F = 2$ observables, especially ϵ_K Using MCMC scan to sample flavour model parameter space:

On the wishlist: nicer flavour models

Conclusions

Conclusions

- Non-minimal versions of gauge mediation remain an attractive BSM scenario
- Gauge messengers for a gauged flavour symmetry: interesting model-building ingredient
- For SU(3)_F with SUSY breaking aligned with SU(3)_F → SU(2)_F breaking in flavour space:
 - large negative contributions to 3rd gen. masses ⇒ stops and sbottoms light
 - smaller -ve contributions to 1st/2nd gen. masses ⇒ other squarks heavy
- Allows for maximal stop mixing without extremely large A-terms
 ⇒ 125 GeV Higgs in MSSM
- Alignment of VEVs can be realized dynamically
- Large contributions to ϵ_K possible. Model dependent, can be estimated in a given flavour model