# Higgs bosons in supersymmetric theories

Heidi Rzehak

Albert-Ludwigs-Universität Freiburg

#### Discoveries at the LHC

#### Expectations (2008):



't Hooft:

Gross: "A Higgs, or more"

"A super world"

Veltman:

"The unexpected"

Nov. 2011

HCP 2011:

Exclusion of a wide Higgs mass range. some theorists' thought: "complete exclusion until the end of 2011" 13 Dec. 2011

ATLAS & CMS report an excess of events: Too early to draw conclusions 4 July 2012

ATLAS & CMS announce the discovery of a Higgs-like particle

8 Oct. 2013

Nobel prize:

for the theoret. discovery of a mechanism that contributes to our understanding

of the origin of

mass

• Mass: free parameter in the Standard Model

expectation from precision measurements:  $\mathcal{O}(100 \text{ GeV})$ (e.g. mass of the W boson)

Moriond '13: CMS:  $m_H = 125.7 \pm 0.3 \, ({\rm stat}) \pm 0.3 \, ({\rm syst}) \, {\rm GeV}$ 

ATLAS: 
$$m_H = 125.5 \pm 0.2$$
 (stat)  $^{+0.5}_{-0.6}$  (syst) GeV

• Spin? Landau-Yang theorem:

Massive spin-1 particle cannot decay into two photons:

Decay into photons observed  $\Rightarrow$  spin  $\neq$  1

Moriond '13: spin = 2: Excluded with > 99% confidence level spin = 0: compatible model dependent

• CP? Moriond '13: CP-even: compatible

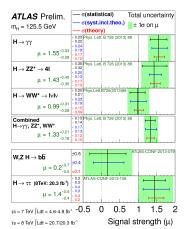
spin = 0

CP-odd: Exclusion with ≥ 98% confidence level

#### • Couplings? so far compatible with the Standard Model:

 Measurement of further production und decay channels:

$$pp \rightarrow H \rightarrow WW$$
 (compatible with SM)


$$pp \rightarrow H \rightarrow \tau \tau$$
 (Evidence!)

$$pp \rightarrow H \rightarrow bb$$

 $-\,$  still relatively large errors ( $\sim$  20 %)

- not all couplings accessible

#### Signal strengths:



- Mass: free parameter in the Stand Model
  - expectation from pr urements: O(100 GeV)
  - other parameters. W boson)

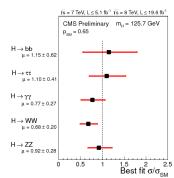
    other parameters. 125.5 + 0.0 (stat) ± 0.3 (syst) GeV Moriond '13: C Higgs nave
    - = 125.5  $\pm$  0.2 (stat)  $^{+0.5}_{-0.6}$  (syst) GeV
- Spin? Landau-Yang theorem:
  - Massive spin-1 particle cannot decay into two photons:
  - Decay into photons observed  $\Rightarrow$  spin  $\neq$  1
  - Moriond '13: spin = 2: Excluded with > 99% confidence level model dependent
- spin = 0: a tible Moriond '13: Cl CP-odd and atible

- spin = 0
- CF -even? \_\_\_\_orusion with  $\gtrsim 98\%$  confidence level

- Couplings? so far compatible with
  - $\mu \to H$  Could be affected by sector (compatible an extended Higgs particle) Measurement of furtificated production und be affected High
     pp → H Could be affected High

$$pp \rightarrow H - Couragtent unitarity (compatible an other unitarity)$$

$$pp \rightarrow H \rightarrow \tau \tau$$
 (Evidence!)


$$pp \to H \to bb$$

. . .

- still relatively large errors (~ 20 %)
- not all couplings accessible

#### Standard Model:

# Signal strengths:

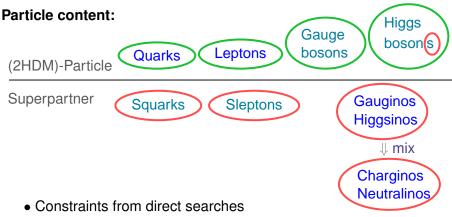


# Minimal Supersymmetric Standard Model (MSSM)

#### **MSSM:** ★ Extension of the Standard Model (SM)

\* Further symmetry:

#### Supersymmetry (SUSY):


$$Q|\mathsf{Boson}\rangle = |\mathsf{Fermion}\rangle, \qquad Q|\mathsf{Fermion}\rangle = |\mathsf{Boson}\rangle$$

Q =supersymmetry generator

# **Recipe:** • Standard Model particles + 2<sup>nd</sup> Higgs doublet (2HDM) (Generation of fermion masses, anomaly cancelations)

- Superpartners
- Explicit soft SUSY-breaking ⇒ many new (complex) parameters
   (Else: mass<sub>superpartner</sub> = mass<sub>2HDM-particle</sub> ← exp. excluded)
- R-Parity: discrete symmetry

# Minimal Supersymmetric Standard Model (MSSM)



- Constraints from direct searches one way to circumvent constraints: larger SUSY masses
- Constraints from indirect probes
   e.g. Higgs boson mass

# Higgs Sector at Born Level

gauge couplings  $\rightarrow$   $H_d$ ,  $H_u$ : Higgs doublets

$$V_{\text{Higgs}} = \frac{g^2 + g'^2}{8} (H_d^+ H_d - H_u^+ H_u)^2 + \frac{g^2}{2} |H_d^+ H_u|^2$$

$$+ |\mu|^2 (H_d^+ H_d + H_u^+ H_u) \qquad \mu \text{: coupl. betw. Higgs}$$

$$+ (m_1^2 H_d^+ H_d + m_2^2 H_u^+ H_u) \qquad \text{soft breaking terms}$$

 $+ |\mu|^2 (H_d^+ H_d + H_u^+ H_u)$   $\mu$ : coupl. betw. Higgs superfields

$$+\left(\epsilon_{ij}|m_{12}^{2}|e^{i\varphi_{m_{12}^{2}}}H_{d}^{i}H_{u}^{j}+h.c.\right)$$

- one phase in the Higgs potential:  $\varphi_{m_{10}^2}$
- phase difference of Higgs doublets ξ

non-vanishing phases:  $\Rightarrow$  maybe

CP- or T-violation?

(T-operator antiunitary ⇒ complex conjugation

of parameters)

#### **Higgs Sector at Born Level**

Higgs potential: gauge couplings 
$$H_d$$
,  $H_u$ : Higgs doublets 
$$V_{\text{Higgs}} = \frac{g^2 + {g'}^2}{8} (H_d^+ H_d - H_u^+ H_u)^2 + \frac{g^2}{2} |H_d^+ H_u|^2 + |\mu|^2 (H_d^+ H_d + H_u^+ H_u) \qquad \mu$$
: coupl. betw. Higgs superfields 
$$+ (m_1^2 H_d^+ H_d + m_2^2 H_u^+ H_u) \qquad \text{soft breaking terms}$$
$$+ (\epsilon_{ii} | m_{12}^2 | e^{i\varphi_{m_{12}}^2} H_d^i H_u^j + h.c.)$$

- one phase in the Higgs potential: φ<sub>m<sup>2</sup><sub>12</sub>
   can be rotated away
  </sub>
- phase difference of Higgs doublets ξ:
   vanishes because of minimum condition

no CP violation at Born level in the Higgs sector

# **Higgs Sector at Born Level**

Physical mass eigenstates (at Born level):

• 5 Higgs bosons: 3 neutral H, h, A; 2 charged  $H^{\pm}$ 

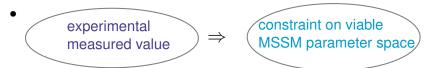
Masses of the Higgs bosons:

• not all independent:

often: Mass  $M_A$  or  $M_{H^\pm}$  (and  $\tan \beta$ ) as free parameter  $\tan \beta = \frac{v_2}{v_1}$ : ratio of the Higgs vac. expect. values

lightest Higgs boson: h

Upper theoretical Born mass bound:


$$M_h < M_Z = 91 \text{ GeV}$$

with quantum corrections of higher orders:  $M_h \lesssim 140 \text{ GeV}$ 



# Why a precise Higgs mass prediction?

 Needed as consistent input for the calculation of cross sections and decay widths in the MSSM



A precise theoretical prediction is needed to fully exploit this constraint:

$$\Delta \textit{M}^{\text{exp.}}_{H} < 1 \text{ GeV}$$
 vs  $\Delta \textit{M}^{\text{theory}}_{H} pprox 3 \text{ GeV}$ 

 In the discussion of the amount of fine-tuning of the MSSM the precise theoretical prediction of the Higgs boson mass enters.

# **Calculation of Higgs masses in the MSSM**

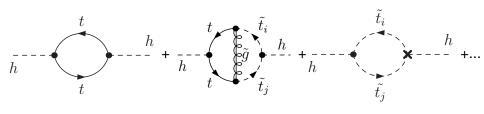
#### Two approaches:

• Feynman diagrammatic approach

```
(or effective potential approach for vanishing external momenta)
```

```
[Brignole, Chankowski, Choi, Dabelstein, Dedes, Degrassi, Demir, Drees, Ellis, Frank, Hahn, Harlander, Heinemeyer, Hollik, Kant, Lee, Martin, Mihaila, Pilaftsis, Pokarski, Ridolfi, Rosiek, H.R., Slavich, Steinhauser, Weiglein, Zwirner, ...]
```

• Renormalization group equation approach


```
[Carena, Draper, Espinosa, Haber, Hempfling, Hoang, Lee, Quiros, Wagner, Zhang, ...]

Very recent [Draper, Lee, Wagner, arXiv:1312.5743]
```

Higgs bosons in supersymmetric theories

# Feynman diagrammatic approach

Calculate Feynman diagrams which contribute to the Higgs-boson self energies  $\hat{\Sigma}$ 



1-loop level  $\mathcal{O}(\alpha_t)$ 

2-loop level  $\mathcal{O}(\alpha_t \alpha_s)$  Counterterm contr.

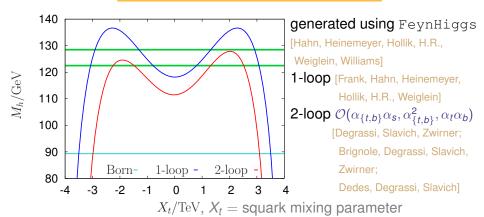
 $\alpha_t \sim (\text{top Yukawa coupl.})^2$ 

# Feynman diagrammatic approach

Two-point-function:

with the matrix: 
$$\begin{matrix} h^0 \\ h^0 \\ h^0 \end{matrix} - \hat{\Sigma}_{H^0 H^0}(p^2) & -\hat{\Sigma}_{H^0 h^0}(p^2) \\ -\hat{\Sigma}_{H^0 h^0}(p^2) & M_{h^0_{Born}}^2 - \hat{\Sigma}_{h^0 h^0}(p^2) \\ -\hat{\Sigma}_{H^0 A^0}(p^2) & -\hat{\Sigma}_{h^0 A^0}(p^2) \end{matrix} - \hat{\Sigma}_{h^0 A^0}(p^2)$$

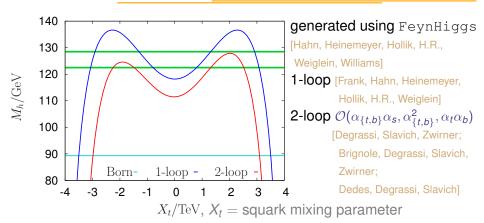
$$\begin{matrix} -\hat{\Sigma}_{H^0 A^0}(p^2) & -\hat{\Sigma}_{h^0 A^0}(p^2) \\ -\hat{\Sigma}_{H^0 A^0}(p^2) & -\hat{\Sigma}_{h^0 A^0}(p^2) \end{matrix}$$


 $-i\hat{\Gamma}(p^2) = p^2 - M(p^2)$ 

Real parameters: 
$$\hat{\Sigma}_{H^0A^0}(p^2) = \hat{\Sigma}_{h^0A^0}(p^2) = 0$$
 no mixing between CP-even and CP-odd states

Calculate the zeros of the determinant of  $\hat{\Gamma}$ 

⇒ loop-corrected Higgs masses

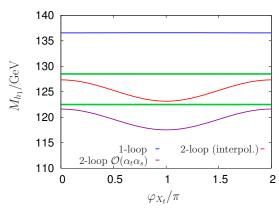

# Implications of a 125.5 GeV Higgs boson (MSSM)



- $\bullet$  A 125.5  $\pm$  3 GeV mass constrains the parameter space but does not exclude the MSSM. (theory uncertainty  $\approx$  3 GeV)
- here: no known 3-loop contributions included

[Martin; Harlander, Kant, Mihaila, Steinhauser]

# Implications of a 125.5 GeV Higgs boson (MSSM)

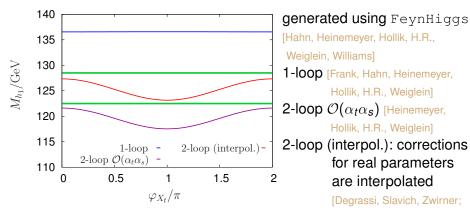



For parameter scans, see e.g.

[Heinemeyer, Stål, Weiglein, arXiv:1112.3026;

Arbey, Battaglia, Djouadi, Mahmoudi, Quevillon, arXiv:1112.3028]

# Higgs boson mass and CP-violating phases




- The Higgs mass does depend on the squark mixing phase  $\varphi_{X_i}$ .
- For  $\varphi_{X_t} \neq n\pi, n \in \mathbb{N}_0$ ,  $h_1$  is not a CP-eigenstate.

generated using FeynHiggs [Hahn, Heinemeyer, Hollik, H.R., Weiglein, Williams] 1-loop [Frank, Hahn, Heinemeyer, Hollik, H.R., Weiglein] 2-loop  $\mathcal{O}(\alpha_t \alpha_s)$  [Heinemeyer, Hollik, H.R., Weiglein] 2-loop (interpol.): corrections for real parameters are interpolated [Degrassi, Slavich, Zwirner; Brignole, Degrassi, Slavich, Zwirner:

Dedes, Degrassi, Slavich]

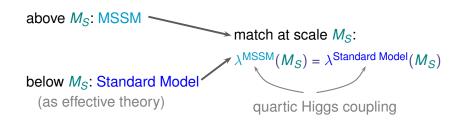
# Higgs boson mass and CP-violating phases



- The Higgs mass does depend on the squark mixing phase  $\varphi_{X_t}$ .
- For  $\varphi_{X_t} \neq n\pi, n \in \mathbb{N}_0$ ,  $h_1$  is not a CP-eigenstate.

[Hahn, Heinemeyer, Hollik, H.R., Weiglein, Williams] 1-loop [Frank, Hahn, Heinemeyer, Hollik, H.R., Weiglein] 2-loop  $\mathcal{O}(\alpha_t \alpha_s)$  [Heinemeyer, Hollik, H.R., Weiglein] 2-loop (interpol.): corrections for real parameters are interpolated [Degrassi, Slavich, Zwirner;

Brignole, Degrassi, Slavich,


Dedes, Degrassi, Slavich]

To do: Implementation of  $\mathcal{O}(\alpha_t^2)$  contr. [Hollik, Passehr, arXiv:1401.8275]

Zwirner;

# Renormalization Group Equation (RGE) approach

 $\star$  assume: all SUSY particles are heavy of order  $\sim M_S$ :



- $\star$  evolve  $\lambda$  to lower scale using Standard Model running (RGE)
- ⋆ the Higgs mass² is then

$$M_p^2(m_t) = 2\lambda(m_t)v^2$$
  $v \approx 174 \text{ GeV}$ 

#### **Advantages**

Feynman diagrammatic approach:

All log- and non-log terms are taken into account at a certain order of perturbation theory:

Especially important for lower mass scales

• Renormalization group equation approach:

Resummation of potentially large log-terms ( $\ln \frac{M_S}{m_t}$ ):

Especially important for larger mass scales

⇒ Combine both approaches (now: only for real parameters)

#### **Combination**

- Feynman diagrammatic part: from FeynHiggs
- Renormalization Group Equation (RGE) part:

quartic Higgs coupling  $\lambda$ 

\* 2-loop RGE for running for the strong coupling  $g_s$  with  $\alpha_s = g_s^2/(4\pi)$  [Espinosa, Quiros '91] **top Yukawa coupling**  $y_t$ 

\* Matching at scale  $M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$ : [Carena, Haber, Heinemeyer, Hollik, Wagner, Weiglein, hep-ph/0001002]

$$\lambda(M_S) = \frac{3y_t^4}{8\pi^2} \frac{X_t^2}{M_S^2} \left[ 1 - \frac{X_t^2}{M_S^2} \right]$$

 $m_{\tilde{t}_i}$  = stop masses

 $X_t = A_t - \mu \cot \beta$  = squark mixing parameter

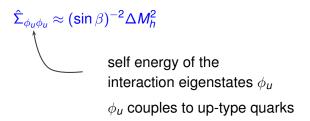
 $\Rightarrow$  leading + next-leading log (ln  $\frac{M_S}{m_t}$ ) resummation

#### **Combination**

• Combination of both approaches:

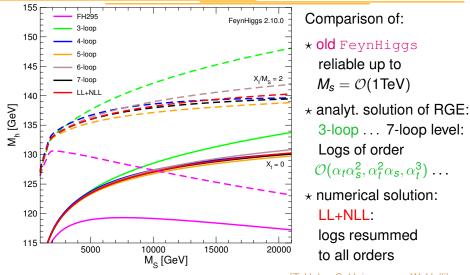
Avoid double counting of logs

⇒ Subtract logs from the Feynman diagrammatic (FD) result:


$$\Delta \textit{M}^{2}_{\textit{h}} = (\Delta \textit{M}^{2}_{\textit{h}})^{\text{FD}}(\textit{X}^{\text{OS}}_{\textit{t}}) - (\Delta \textit{M}^{2}_{\textit{h}})^{\text{log}}(\textit{X}^{\text{OS}}_{\textit{t}}) + (\Delta \textit{M}^{2}_{\textit{h}})^{\text{RGE}}(\textit{X}^{\overline{\text{MS}}}_{\textit{t}})$$

- \* Both approaches use a MS top quark mass
- \* FD:  $X_t$  in on-shell scheme, RGE:  $X_t$  in  $\overline{\text{MS}}$  scheme: Conversion needed:

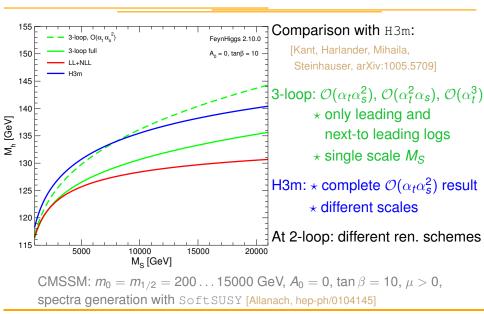
$$X_t^{\overline{\text{MS}}} = X_t^{\text{OS}} \left[ 1 + \ln \frac{M_S^2}{m_t^2} \left( \frac{\alpha_s}{\pi} - \frac{3\alpha_t}{16\pi} \right) \right]$$


#### **Combination**

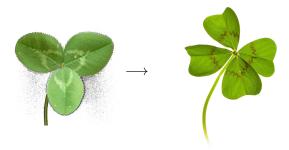
For  $M_A \gg M_Z$ :



Correction can be incorporated into the self energy matrix


#### Results for the combination




 $\textit{M}_{\textit{A}} = \textit{M}_{\textit{2}} = \mu = 1$  TeV,  $\textit{m}_{\tilde{\textit{g}}} = 1.6$  TeV,  $\tan \beta = 10$ 

[T. Hahn, S. Heinemeyer, W. Hollik, H.R., G. Weiglein, arXiv:1312.4937]

#### Results for the combination



# **More Higgs Bosons**



#### Next-to Minimal Supersymmetric Standard Model

#### Field content:

NMSSM superfields = MSSM superfields + Higgs superfield singlet  $\hat{S}$ 

#### Superpotential:

$$W_{\text{NMSSM}} = W_{\text{MSSM}}|_{\mu=0} - \lambda \, \hat{S} \, \hat{H}_d^1 \, \hat{H}_u^2 + \lambda \, \hat{S} \, \hat{H}_d^2 \, \hat{H}_u^1 + \frac{1}{3} \, \kappa \, \hat{S}^3$$

2 new coupling parameters:  $\lambda$ ,  $\kappa$   $(\hat{H}_d, \hat{H_u})$ : Higgs doublet superfields)

$$\mu$$
 term of the MSSM:  $W_{MSSM} = \dots \mu \hat{H}_d^1 \hat{H}_u^2 + \dots$ 

→ dynamically generated in the NMSSM (scalar Higgs singlet field has a vacuum expectation value v<sub>S</sub>)

**Soft-breaking part** extended: New parameters:  $m_S^2$ ,  $A_{\lambda}$ ,  $A_{\kappa}$ 

#### Next-to Minimal Supersymmetric Standard Model

Higgs doublets and singlet expanded about the vacuum:

$$H_{d} = \begin{pmatrix} \frac{1}{\sqrt{2}} (\mathbf{v}_{d} + h_{d} + i\mathbf{a}_{d}) \\ h_{d}^{-} \end{pmatrix} \qquad H_{u} = e^{i\varphi_{u}} \begin{pmatrix} h_{u}^{+} \\ \frac{1}{\sqrt{2}} (\mathbf{v}_{u} + h_{u}^{0} + i\mathbf{a}_{u}^{0}) \end{pmatrix}$$
$$S = \frac{e^{i\varphi_{s}}}{\sqrt{2}} (\mathbf{v}_{s} + h_{s} + i\mathbf{a}_{s})$$

- three real scalar fields:  $h_d$ ,  $h_u$ ,  $h_s$
- $\bullet$  three real pseudoscalar fields:  $a_d,\,a_u,\,a_s$
- two complex scalar fields:  $h_d^{\pm}$ ,  $h_u^{\pm}$

no mass eigenstates

#### Next-to Minimal Supersymmetric Standard Model

In the MSSM: (3 neutral, 2 charged Higgs bosons, 4 neutralinos)

lightest CP-even Higgs boson:

upper theoretical mass bound:

at tree-level:  $M_h \leq M_Z$ 

at loop-level: bound shifted to higher values:  $\textit{M}_{\textit{h}} \lesssim 140~\text{GeV}$ 

In the NMSSM: (5 neutral, 2 charged Higgs bosons, 5 neutralinos)

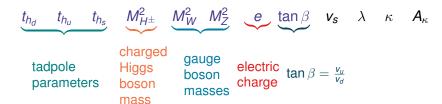
- extra contributions  $\sim \lambda^2$
- ⇒ already at tree-level larger masses possible
  - + loop corrections (possibly smaller as in the MSSM)

# Status: CP-conserving NMSSM (up to 2010)

- leading one-loop contributions due to (s)top/(s)bottom loops
   [Ellwanger hep-ph/9302224; Elliott, King, White hep-ph/9302202; hep-ph/9305282; hep-ph/9308309; Pandita Z. Phys. C59, '93; Phys. Lett. B318, '93]
- one-loop leading-log contributions due to chargino, neutralino and Higgs boson loops [Ellwanger, Hugonie hep-ph/0504269]
- two-loop leading-log contributions of  $\mathcal{O}(\alpha_s \alpha_{\{t,b\}})$  and  $\mathcal{O}(\alpha_{\{t,b\}}^2)$  (can be adapted from the MSSM)

  [Yeghian hep-ph/9904488; Ellwanger, Hugonie, hep-ph/9909260]
- full one-loop corrections in the DR-scheme
   [Degrassi, Slavich arXiv:0907.4682; Staub, Porod, Herrmann arXiv:1007.4049]
- two-loop corrections in the  $\overline{DR}$ -scheme of  $\mathcal{O}(\alpha_s \alpha_t + \alpha_s \alpha_b)$  (can be adapted from the MSSM) [Degrassi, Slavich arXiv:0907.4682]

# Status: CP-conserving NMSSM (up to 2010)


- leading one-loop contributions due to (s)top/(s)bottom loops
   [Ellwanger hep-ph/9302224; Elliott, King, White hep-ph/9302202; hep-ph/9305282; hep-ph/9308309; Pandita Z. Phys. C59, '93; Phys. Lett. B318, '93]
- one-loop leading contributions due to chargino, neutralino and Higgs
   loops [Ellwapper Hugopia hep-ph/0504269]
- two-loc uding Ellwanger, Hugonie, hep-ph/0508022] }) are two-loc uding Ellwanger, Hugonie, Hugonie, Hugoni
- full\_e-loop corrections in the DR-self
- [Porod, hep-ph/0301101; in the [Porod hep-ph/0301101] [Porod hep-ph/0301101] [Porod hep-ph/0301101]
  - [Degrassi, Slavich arXiv:0907.4682]

#### **Real Parameters**

#### Original parameter set:

soft SUSY-breaking parameters gauge couplings Higgs vacuum expectation values couplings 
$$m_{H_d}^2$$
  $m_{H_u}^2$   $m_S^2$   $A_{\lambda}$   $g$   $g'$   $v_u$   $v_d$   $v_s$   $\lambda$   $\kappa$   $A_{\kappa}$ 

#### New parameter set:



#### **Real Parameters**

CP-even Higgs boson mass matrix  $M_S$  (3 × 3 matrix):

$$M_S^2 = M_S^2(M_{H_\pm}^2, M_W^2, M_Z^2, \lambda, e, \tan \beta, \beta_B, t_{h_d}, t_{h_u}, t_{h_s}, \kappa, v_s, A_\kappa)$$
 mixing angle of charged Higgs boson fields: at tree level:  $\beta_B = \beta$  enters  $M_S$  via replacement  $A_\lambda \to M_{H^\pm}$ 

CP-odd Higgs boson mass matrix  $M_P$  (3 × 3 matrix):

$$M_P^2 = M_P^2(M_{H_\pm}^2,\,M_W^2,\,M_Z^2,\,\lambda,\,e,\,\tan\beta,\, \beta_{B},\,t_{h_d},\,t_{h_u},\,t_{h_s},\,\kappa,\, \textit{v}_{\textit{s}},\,\textit{A}_{\kappa})$$

Here:  $\beta_B$  also describes the tree-level mixing of the CP-odd fields yielding one Goldstone boson

#### **Real Parameters**

#### Renormalization procedure:

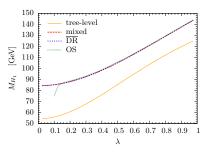
$$\begin{split} M_S^2 &\to M_S^2(M_{H_\pm}^2,\,M_W^2,\,M_Z^2,\,\lambda,\,\textbf{\textit{e}},\,\tan\beta,\,\kappa,\,\textbf{\textit{v}}_{\textbf{\textit{s}}},\,\textbf{\textit{A}}_{\kappa}) \\ &+ \delta M_S^2(M_{H_\pm}^2,\,M_W^2,\,M_Z^2,\,\lambda,\,\textbf{\textit{e}},\,\tan\beta,\,\kappa,\,\textbf{\textit{v}}_{\textbf{\textit{s}}},\,\textbf{\textit{A}}_{\kappa},\,\delta M_{H_\pm}^2,\,\delta M_W^2,\,\delta M_Z^2, \\ &\qquad \qquad \delta \lambda,\,\delta Z_{\textbf{\textit{e}}}\,\textbf{\textit{e}},\,\delta\tan\beta,\,\delta\kappa,\,\delta \textbf{\textit{v}}_{\textbf{\textit{s}}},\,\delta \textbf{\textit{A}}_{\kappa},\,\delta t_{h_d},\,\delta t_{h_u},\,\delta t_{h_s}) \end{split}$$
 linear in parameter counterterms  $\delta M_{H_\pm}^2,\,\dots$ 

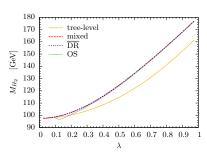
Example: 
$$M_{S_{11}}^2 = \frac{\sin^2 \beta}{\cos^2 \beta - \beta_B} M_{H^{\pm}}^2 + \dots$$

Replace: 
$$M_{H_{\pm}}^2 \rightarrow M_{H_{\pm}}^2 + \delta M_{H_{\pm}}^2$$
  
 $\tan \beta \rightarrow \tan \beta + \delta \tan \beta$ 

No counterterm for  $\beta_B$ 

Expansion about counterterms:


$$\delta M_{SH}^2 = \sin^2 \beta \, \delta M_{H^{\pm}}^2 + 2 \sin^2 \beta \cos^3 \beta \, M_{H^{\pm}}^2 \delta \tan \beta + \dots$$

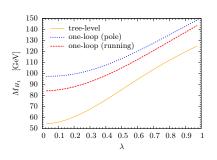

#### **Renormalization Schemes**

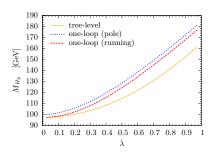
|                                                       | mixed           | DR              | on-shell (OS) |                                                |
|-------------------------------------------------------|-----------------|-----------------|---------------|------------------------------------------------|
| $t_{h_d}, t_{h_u}, t_{h_s}$                           | "OS"            | "OS"            | "OS"          | vanishing tadpole contr.                       |
| $M_{H^\pm},M_W,M_Z$                                   | OS              | $\overline{DR}$ | OS            |                                                |
| е                                                     | OS              | $\overline{DR}$ | OS            | via $ee\gamma$ vertex in the                   |
| $\tan \beta$                                          | $\overline{DR}$ | $\overline{DR}$ | DR            | Thomson limit                                  |
| $V_{\mathcal{S}},\lambda,\kappa,\mathcal{A}_{\kappa}$ | DR              | $\overline{DR}$ | OS            | via chargino,                                  |
|                                                       |                 | – Main scheme   |               | neutralino and<br>CP-odd Higgs boson<br>masses |

### **Results: NMSSM with Real Parameters**

#### Different renormalization schemes:



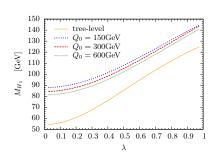


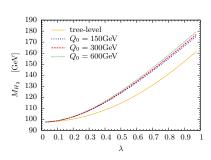


- ullet in general good agreement between the different schemes ( $\lesssim$  1 GeV)
- for small  $\lambda$ : OS-scheme deviates due to finite  $\frac{1}{\lambda}$  terms in the counterterms

$$\kappa = \lambda/5$$
,  $\tan \beta = 2$ ,  $A_{\lambda} = 500$  GeV,  $A_{\kappa} = -10$  GeV,  $v_{S} = \frac{1}{\sqrt{2}} \frac{250}{\lambda}$  GeV,  $M_{S} = 300$  GeV,  $A_{t} = A_{b} = A_{\tau} = -1.5 M_{S}$ ,  $M_{1} = M_{S}/3$ ,  $M_{2} = 2/3 M_{S}$ ,  $M_{3} = 2 M_{S}$ 

## **Results: NMSSM with Real Parameters**

### Different top quark schemes:




relatively large differences between running and pole top quark mass
 2-loop contributions reduce this uncertainty (here only one-loop)

### **Results: NMSSM with Real Parameters**

### Different renormalization scales (DR-scheme):





- ullet Running top quark mass is used changes also with the scale  $Q_o$ 
  - $\Rightarrow$  driving the differences

again: 2-loop contributions reduce this uncertainty

(here only one-loop)

# **Degenerate Higgs bosons**

#### In the NMSSM:

2 Higgs bosons could be nearly degenerate with masses of  $\sim$  125 GeV

[Gunion, Jiang, Kraml, arXiv:1207.1545]

### For illustration (one possibility):

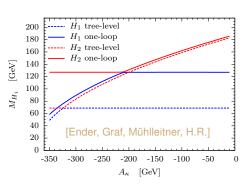



Illustration: Cross-over region of  $H_1$  and  $H_2$  at  $A_{\kappa} \approx -210$  GeV:

• Masses  $M_{H_i}\sim$  125 GeV

- trilinear, SUSY-breaking
- H<sub>1</sub> and H<sub>2</sub> interchange their role singlet coupling

# **Degenerate Higgs bosons**

#### In the NMSSM:

- 2 Higgs bosons could be nearly degenerate with masses of  $\sim$  125 GeV
- ⇒ Change of the effective couplings

[Gunion, Jiang, Kraml, arXiv:1207.1545]

### For illustration (one possibility):

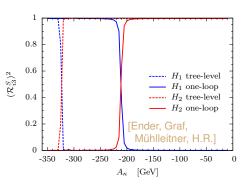



Illustration: Cross-over region of  $H_1$  and  $H_2$ : Masses  $\sim$  125 GeV

 $A_{\kappa} < -210 \text{ GeV}$ :  $H_1$  singlet-like,  $H_2$  non-singlet like

 $A_{\kappa} > -210$  GeV:  $H_1$  non-singlet like,  $H_2$  singlet-like

# **Degenerate Higgs bosons**

#### In the NMSSM:

- 2 Higgs bosons could be nearly degenerate with masses of  $\sim$  125 GeV
- ⇒ Change of the effective couplings

[Gunion, Jiang, Kraml, arXiv:1207.1545]

### For illustration (one possibility):

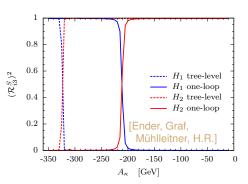



Illustration: Higher-order corrections are necessary

## Status: CP-violating NMSSM (up to now)

- one-loop contributions in the effective potential approach:
  - from the third generation squark sector
     [Ham, Kim, Oh, Son hep-ph/0104144;
     Ham, Kim, Oh, Son arXiv:0708.2755]
  - and from charged particles
     [Ham, Oh, Son hep-ph/0110052]
  - and from the neutralino sector
     [Ham, Jeong, Oh hep-ph/0308264]
  - from the quark/squark sector and gauge boson sector [Funakubo, Tao hep-ph/0409294]
- and logarithmic two-loop contributions
   [Cheung, Hou, Lee, Senaha arXiv:1006.1458]
- full one-loop corrections in a mixed DR/on-shell scheme (DR scheme can be easily deduced)

[Graf, Gröber, Mühlleitner, HR, Walz arXiv:1206.6806]

## Status: CP-violating NMSSM (up to now)

- one-loop contributions in the effective potential approach:
  - from the third generation squark sector
     [Ham, Kim, Oh, Son hep-ph/0104144;
     Ham, Kim, Oh, Son arXiv:0708.2755]
  - and from charged particles
     [Ham, Oh, Son hep-ph/0110052]
  - and from the neutralino sector
     [Ham, Jeong, Oh hep-ph/0308264]
  - from the quark/squark sector and gauge boson sector [Funakubo, Tao hep-ph/0409294]
- and logarithmic two-loop contributions
   [Cheung, Hou, Lee, Senaha arXiv:1006.1458]

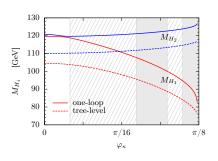
[Graf, Gröber, wurnieitner, HR, waiz arxiv.1200.0000]

# **Complex Parameters – Renormalization Scheme**

### Original parameter set:

$$\textit{m}_{\textit{H}_{\textit{d}}}^{2} \; \textit{m}_{\textit{H}_{\textit{u}}}^{2} \; \textit{m}_{\textit{S}}^{2} \; \varphi_{\textit{A}_{\kappa}} \; \varphi_{\textit{A}_{\lambda}} \; |\textit{A}_{\lambda}| \; \textit{g} \; \textit{g'} \; \textit{v}_{\textit{u}} \; \textit{v}_{\textit{d}} \; \textit{v}_{\textit{s}} \; \varphi_{\textit{s}} \; \varphi_{\textit{u}} \; |\lambda| \; \varphi_{\lambda} \; |\kappa| \; \varphi_{\kappa} \; |\textit{A}_{\kappa}|$$

New parameter set:


$$\underbrace{t_{h_d} \quad t_{h_u} \quad t_{h_s} \quad t_{a_d} \quad t_{a_s} \quad M_{H^\pm}^2 \quad M_W^2 \quad M_Z^2 \quad e}_{\text{on-shell}} \quad \underbrace{\tan \beta \quad \mathbf{v_s} \quad \varphi_s \quad \varphi_u \quad |\lambda| \quad \varphi_\lambda \quad |\kappa| \quad \varphi_\kappa \quad |\mathbf{A_\kappa}|}_{\overline{\mathsf{DR}}}$$

generalisation of the "mixed scheme"

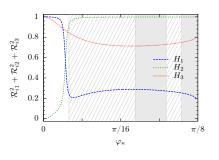
Remark: Counterterms of  $\varphi_s, \varphi_u, \varphi_\lambda, \varphi_\kappa$  vanish in this scheme

## **Results: NMSSM with Complex Parameters**

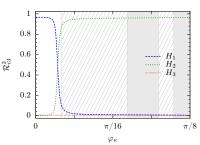
### Higgs mass spectrum with tree-level CP-violation:






- ullet clear dependence on  $\varphi_{\kappa}$ , also at tree-level
- no values for  $\varphi_{\kappa} > \frac{\pi}{8}$ : necessary minimum condition is not fulfilled

$$\begin{split} |\lambda| &= 0.72, \, |\kappa| = 0.20, \tan\beta = 3, \, M_{H^\pm} = 629 \text{ GeV}, \, |A_\kappa| = 27 \text{ GeV}, \, |v_{\mathcal{S}}| = \frac{1}{\sqrt{2}} \frac{198}{|\lambda|} \text{ GeV} \\ M_{Q_3} &= 490 \text{ GeV}, \, M_{\tilde{l}_H} = 477 \text{ GeV}, \, |A_b| = 963 \text{ GeV}, \, |A_t| = 875 \text{ GeV}, \, M_{\tilde{l}_{\neq}\{\tilde{b},\tilde{l}\}} = A_{l\neq\{b,t\}} = 1 \text{ TeV}, \\ M_1 &= 145 \text{ GeV}, \, M_2 = 200 \text{ GeV}, \, M_3 = 600 \text{ GeV}. \end{split}$$


# **Results: NMSSM with Complex Parameters**

One-loop mixing with tree-level CP-violation:

size of CP-violation:



size of CP-even singlet component:



- Size of CP-violation: Values of 0 and 1 correspond to no CP-violation.
   H<sub>1</sub> and H<sub>3</sub> clearly can be a mixture of CP-even and CP-odd.
- Here, no big mixture of the singlet and the other components.

#### NMSSMCALC

- Reads in: SusyLesHouchesAccord file:
  - parameters in terms of real part and imaginary part (slightly modified renormalization scheme)
  - $\star$  the phase  $\varphi_u$  has to be given additionally
- Outputs a SLHA file including (besides non-Higgs parameters):
  - \* Higgs boson masses
  - \* Higgs boson mixings
  - \* Higgs branching ratios

(based on HDECAY [Djouadi, Kalinowski, Spira, hep-ph/9704448;

Djouadi, Kalinowski, Mühlleitner, Spira, in arXiv:1003.1643]

(for partial decay widths in the complex NMSSM,

see also [Munir, Roszkowski, Trojanowski, arXiv:1305.0591; Munir, arXiv:1310.8129])

(NMSSMCALC: see http://www.itp.kit.edu/ maggie/NMSSMCALC/)

## **Summary**

- Exciting times!
- Higgs boson masses and mixings are important
   as input for cross sections and partial decay widths
   as constraints of the parameters spaces
- Improved Higgs mass prediction for the MSSM for large stop masses
- Complete one-loop Higgs mass prediction for the CP-violating NMSSM
- Further program development and improvement to come
   (for both FeynHiggs and NMSSMCALC)