DIRECT AND INDIRECT SEARCHES OF NEW PHYSICS IN MULTI-BOSONS FINAL STATES AT ATLAS

Camilla Maiani CEA Saclay

13.02.2014

LPSC Grenoble

JE ME PRÉSENTE

Jan 2008 - July 2008

- * Master thesis at Rome University "La Sapienza"
 - title: Development of the muon isolation algorithm at ATLAS
 - supervisors: prof. Carlo Dionisi, prof. Stefano Giagu

Oct 2008 - Jan 2012

- * Ph.D. thesis at Rome University "La Sapienza"
 - ▶ title: $J/\psi \rightarrow \mu^+\mu^-$ cross-section and B-lifetime determination at ATLAS
 - supervisors: prof. Carlo Dionisi, prof. Stefano Giagu, doct. Marco Rescigno

Feb 2012 - Feb 2014/2016

- * Post-Doctorate at CEA Saclay within Samira Hassani's ERC-DIBOSON project
 - project goal: diboson production for SM measurements and new physics searches at ATLAS

Presentation Outline

- * Indirect new physics searches using diboson production at ATLAS
 - cross-section and Triple Gauge Coupling (TGC) measurement in Wγ
 - ▶ first anomalous Quartic Gauge Couplings (QGC) measurement in WYY
- * Direct new physics searches using diboson production at ATLAS
 - model independent searches for new resonances decaying to Wγ
- * Other ways: using the Higgs-candidate as a probe at ATLAS
 - ▶ spin-parity measurement in the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ decay channel

- * Direct searches
- * Other ways: using the Higgs

Introducing Triple Gauge Couplings (TGC)

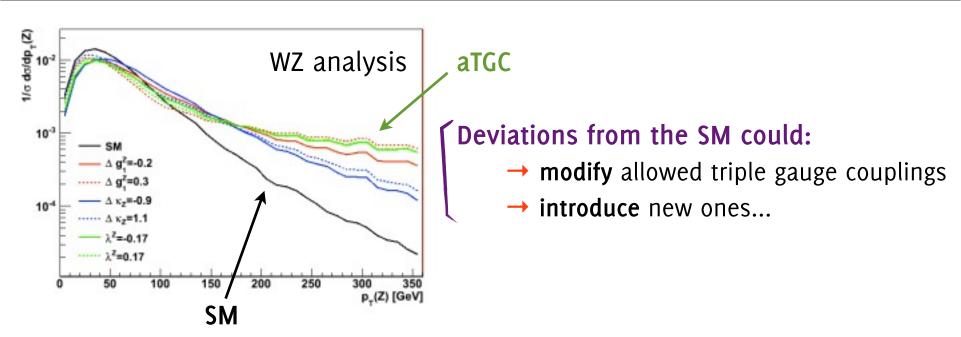
- * Triple gauge couplings are a direct consequence of the SU(2) x U(1) structure of the electroweak sector
- * Defining an effective Lagrangian:

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = i \left[g_1^V W_{\mu\nu}^\dagger W^\mu V^\nu - W_{\mu\nu} W^{\dagger\mu} V^\nu \right) \left(\kappa^V W_\mu^\dagger W_\nu V^{\mu\nu} + \frac{\lambda^V}{m_W^2} W_{\rho\mu}^\dagger W_\nu^\mu V^{\nu\rho} \right]$$

In the Standard Model:

- $g_1^V = \kappa^V = 1$ (set limits on $\Delta g = g 1$, $\Delta \kappa = \kappa 1$)
- $\lambda^{V} = f_4^{V} = f_5^{V} = h_3^{V} = h_4^{V} = 0$

- * Measurement of TGCs
 - study of di-boson production → high stat, clean measurements
 - gives access to new physics in the high energy range



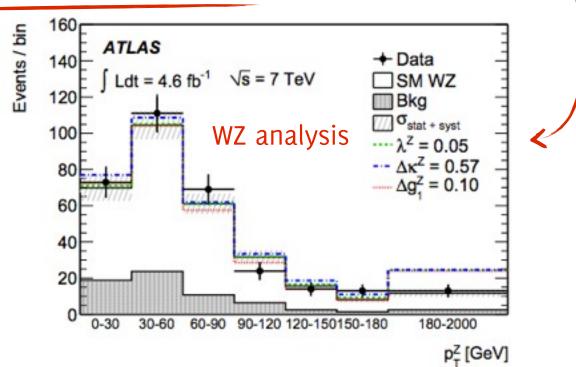
- * Direct searches
- * Other ways: using the Higgs

TGC Sensitivity to New Physics

How do new physics processes relate to aTGCs?

parameters measurable in Wγ

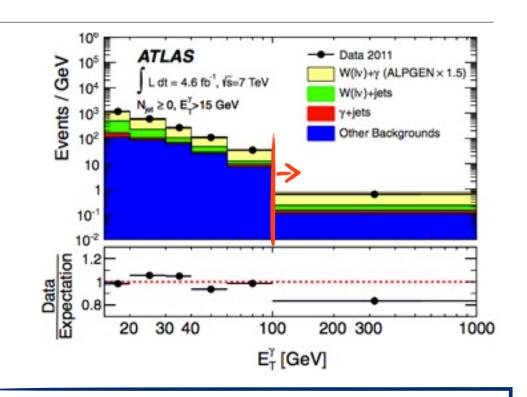
Theoretical predictions	Δκ	(λ)
2HDM (Two Higgs doublet model)	0,016	0,0014
E6 (→ Z', W')	2,5 . 10-5	0,003
SuperSymmetry	0,005	5 . 10-5
Technicolor	0,002	



- * Direct searches
- * Other ways: using the Higgs

How do we Measure TGCs

- ***** Goal: set limits on TGC parameters \rightarrow using WW, WZ, ZZ, (WY) ZY
 - all parameters expected to be zero
- ***** Experimentally
 - we check deviations of the cross-section from the SM prediction
 - higher deviations are expected in the high energy range
 - maximum likelihood defined to set limits



- * Direct searches
- * Other ways: using the Higgs

Wy Analysis Overview

- * Analyzing ATLAS 2011 dataset
- * Signal:
 - $\rightarrow WY \rightarrow \ell VY$
- * Backgrounds estimated from data
 - W+jets, γ+jets → ABCD method
- * Other backgrounds (from MC)
 - Drell-Yan, WW/WZ/ZZ, top
- * Main systematic uncertainties
 - luminosity ~3.9%
 - photon identification ~6%
 - ▶ jet energy scale ~2-3%
 - ▶ EM scale and resolution ~1.5-3%
 - will improve with more stats!

ex-fid cross-section measurement [pb]

Njet \geq 0: 2.77 ± 0.03 (stat.) ± 0.33 (syst.) ± 0.14 (lumi.)

Njet ≥ 0 (MCFM): 1.96 ± 0.17

Njet = 0: 1.76 \pm 0.03 (stat.) \pm 0.21 (syst.) \pm 0.08 (lumi.)

Njet = 0 (MCFM): 1.39 ± 0.13

aTGC extraction: $p_T(\gamma) > 100 \text{ GeV}$, $N_{jet} = 0$

- * Direct searches
- * Other ways: using the Higgs

Defining the Likelihood

The probability that the number of **expected signal and background events** gives the number of **events observed** is regulated by a Poissonian function:

Number of expected signal and background events..

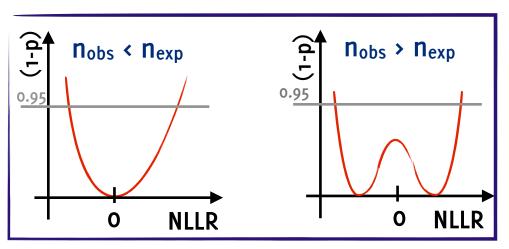
$$N_s^i(\sigma_{W\gamma}^{tot}, \{x_k\}) = \underbrace{\sigma_{W\gamma}^{tot}} A \cdot C \cdot \int \mathcal{L}(t) dt \cdot (1 + \sum_{k=1}^n x_k S_k^i)$$
systematic uncertainties

$$N_b^i(\{x_k\}) = N_b^i(1 + \sum_{k=1}^n (x_k B_k^i))$$

SM cross-sec

$$(p_0) + p_1 * \lambda_{\gamma} + p_2 * \Delta \kappa_{\gamma}$$
$$+p_3 * \lambda_{\gamma}^2 + p_4 * \lambda_{\gamma} * \Delta \kappa_{\gamma}$$
$$+p_5 * \Delta \kappa_{\gamma}^2) \cdot A \cdot C$$

→ **p**_i extracted from a multi-dimensional fit on MCFM MC



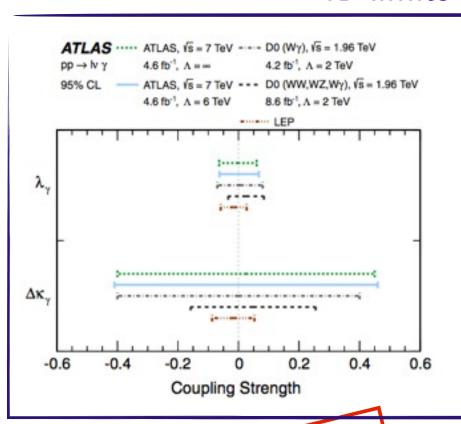
- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs

Using Frequentist Method for Limits Extraction

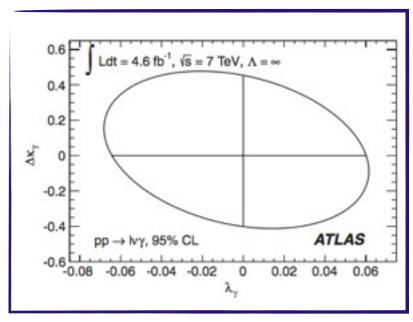
* TGC likelihood functions can have more than one minimum

→ Maximizing the likelihood is not enough!

- * Limits extraction
 - using negative log-likelihood ratio, function of:
 - → aTGC parameter (POI)
 - → nuisance parameters (systematic uncertainties)
 - applying frequentist procedure to look for 95% CLs interval
- * Developed a tool for the extraction of TGC limits here at Saclay
 - now used in many other diboson analyses



- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs


Wy Observed TGC Limits

1D limits

compatible with SM predictions

correlation

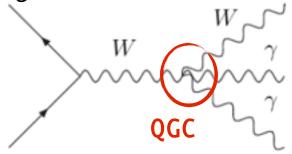
* My role:

- ▶ Wy background data driven estimates
- ▶ W/ZY cross-section extraction
- ▶ W/ZY TGC limits setting
- → publications: Phys. Rev. D 87, 11 (2013)
- → one conference talk

- * Direct searches
- * Other ways: using the Higgs

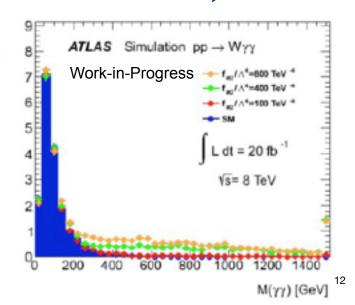
Perspectives on aTGC and aQGC Measurements

- * All channels studied with 2011 data @ 7 TeV → 4.7 fb⁻¹ @ 7 TeV
 - no deviations found wrt the Standard Model
- * Sensitivity is still low!
 - the channel with highest statistics Wy gives $\Delta \kappa_{\gamma}$ < 0.4 and λ_{γ} < 0.05
 - the "interesting" range is a factor 10 away $\rightarrow \Delta \kappa_{Y} \sim 0.01$ and $\lambda_{Y} \sim 0.001$
- * Improvements expected soon
 - analyzing full 2012 data sample → 20.3 fb⁻¹ @ 8 TeV
 - combining channels sensitive to the same couplings
- * Need to run at 13 TeV (\rightarrow higher sensitivity) and 100 fb⁻¹ to probe the interesting region \rightarrow 2 to 3 years of data taking



- * Direct searches
- * Other ways: using the Higgs

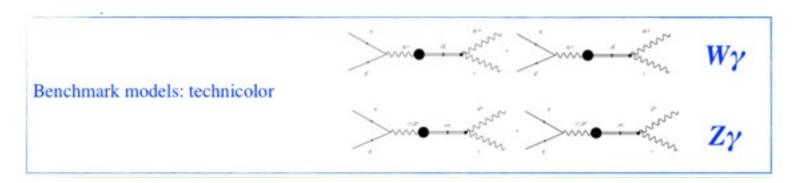
First Look at Quartic Gauge Couplings: Wyy


- LHC has opened new era of Quartic Gauge Coupling (QGC) measurements:
 - Vector Boson Scattering of particular interest → confirm unitarization
 - search for new resonances in the multi-TeV range
- ▶ WYY paper in preparation: \rightarrow 20.3 fb⁻¹ @ 8 TeV
 - fiducial Wyy production cross-section
 - first QGC limits at ATLAS
- QGC extraction:
 - same techniques as for TGCs

...many other vertices

* My role:

- contact person of the analysis and editor of the publication
- responsible for the cross-section measurement
- → publication on PLB forseen before March 2014



- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs

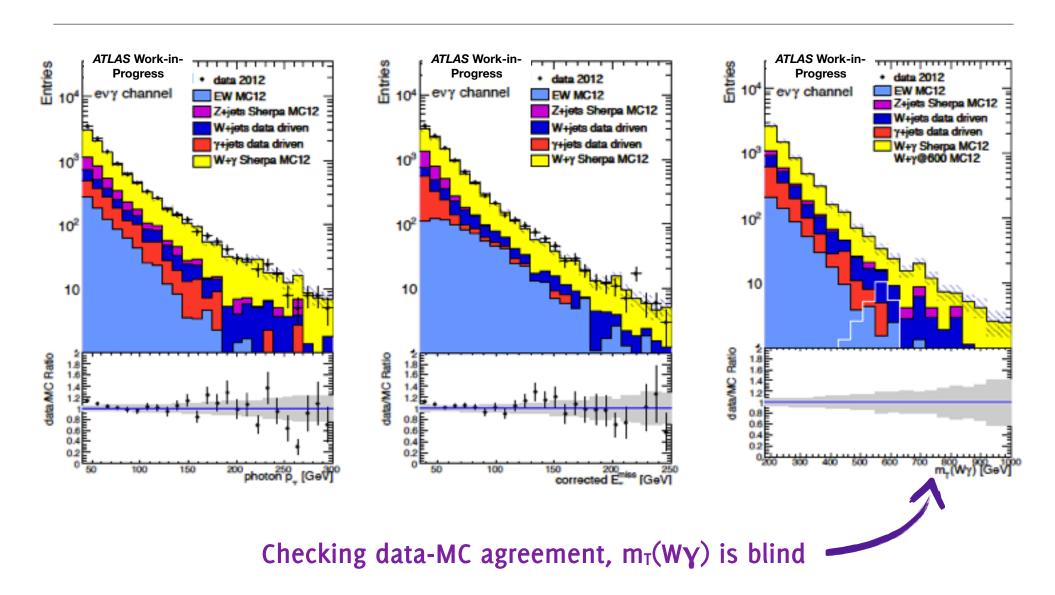
DIRECT, MODEL INDEPENDENT SEARCHES

* Goal: perform model-independent searches for new resonances decaying to $W(\ell \nu)\gamma$ or $Z(\ell)\gamma$ final states

* Strategy:

- Study background composition in "SM" dominated region
- ▶ Perform signal+background fit on $m_T(W\gamma)$ for different signal massese
- Extract exclusion/discovery limits by using <u>ATLAS frequentist approach</u>

* My role:


- Main author of Wγ analysis: from background estimates to statistical treatment
- Editor of the publication (PLB in preparation)

- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs

BACKGROUND COMPOSITION

- * Indirect searches
- ***** Direct searches
- * Other ways: using the Higgs

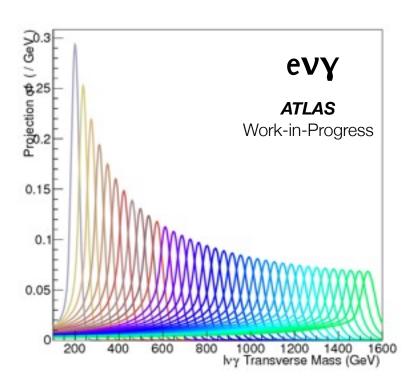
MASS MODELLING FOR SIGNAL EXTRACTION

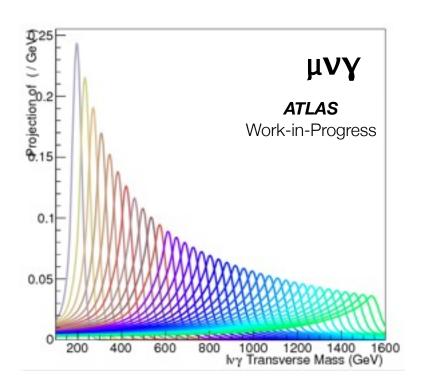
Performing unbinned extended maximum likelihood mass fit

$$\mathcal{L} = \prod_{\substack{\text{categories}\\ \text{events}}} \text{Pois}(N_{sig} + N_{bkg}) \cdot \prod_{\substack{\text{events}\\ \text{events}}} f_{sig} \cdot PDF_{sig}(m_T(W\gamma)) + (1 - f_{sig}) \cdot PDF_{bkg}(m_T(W\gamma))$$

- Signal pdf: Gaussian + Crystal Ball (CB)
- Background pdf:
 - baseline: sum of two exponentials

empirical

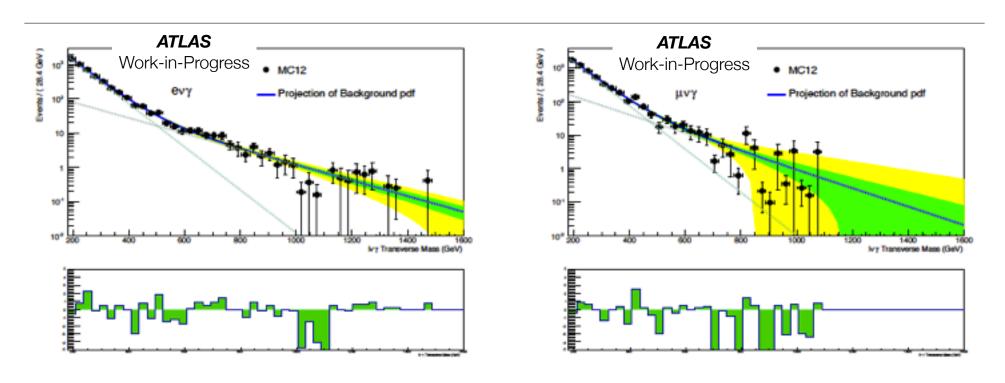



- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs

SIGNAL MODELLING OVERVIEW

Wγ signal pdf:

- empirical model optimized on benchmark MC samples
- extrapolation for masses in between
- very different resolutions at low and high mass and between decay channels

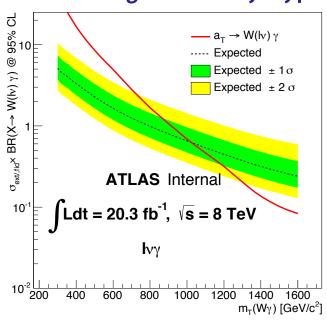


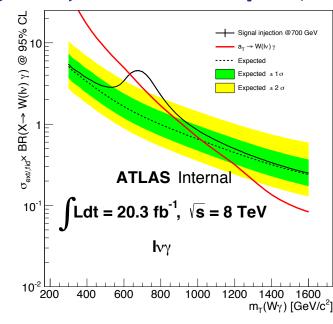
- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs

BACKGROUND MODELLING OVERVIEW

Wγ background pdf:

- using background expectations (from MC and data driven estimates) to optimize the background shape
- NB: the parameters used in the final limits extraction will be those taken from a direct fit on data




- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs

EXPECTED LIMITS @ 8 TEV

expected for background only hypothesis

signal injection at $m_T(WY) = 700 \text{ GeV}$

* Main systematics:

- normalization: luminosity, γ ID, γ isolation
- shape: small uncertainty on resolution
- * Final steps of the analysis on-going:
 - ▶ unblinding of 2012 data → expected next week

2011 exclusion ~ 700 GeV

- * Indirect searches
- * Direct searches
- **★ Other ways: using the Higgs**

HIGGS-CANDIDATE AS A PROBE TO LOOK FOR NEW PHYSICS

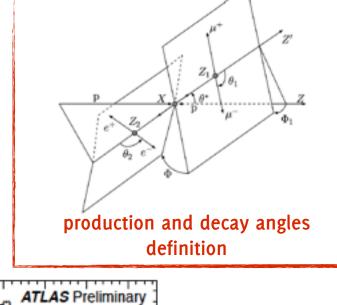
in summer 2012 a new Higgs-like particle is found

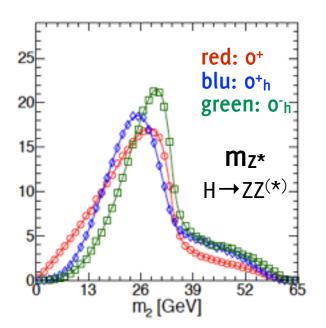
- The discovery of a new Higgs-like particle opens a number of measurements
 - * significance, mass and couplings
 - spin-parity
- These allow to test the new particle → is it a SM Higgs? Is it new physics (composite Higgs)? Does it point to new physics (CP violation terms, supersymmetric partners)?

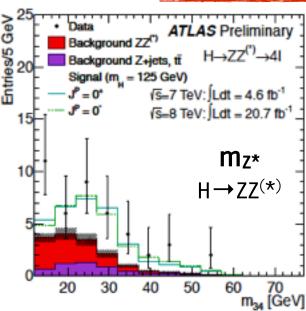
* My role:

- ▶ development of the MELA framework on $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$
- understanding of detector acceptance and selection effects
- contribution to systematic uncertainties estimate
- extraction of signal/background hypotheses separations
- editor of the spin-parity part of ATLAS-CONF-2013-013
- → publications: ATLAS-CONF-2012-169, ATLAS-CONF-2013-013, Phys. → one talk at LHC France Lett. B 726, 1–3 (2013)

- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs


OBSERVABLES AND SEPARATION POWER


 $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ is very clean, and the full decay kinematic is measured


Defining a 1D discriminant from all the observables sensitive to J^P:

$$m_1$$
, m_2 , $\cos\theta^*$, ϕ_1 , $\cos\theta_1$, $\cos\theta_2$, ϕ

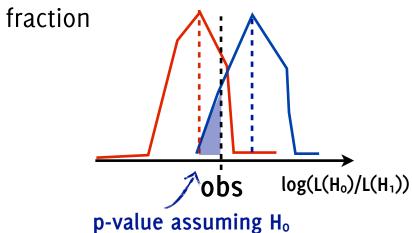
Separation power is altered by background presence and selection effects

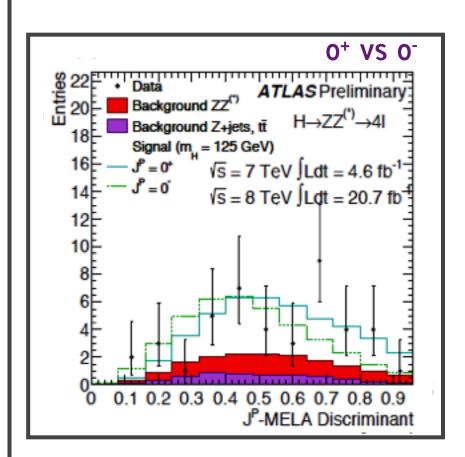
* Direct searches

* Other ways: using the Higgs

SPIN MEASUREMENT IN $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ Decay

- Discriminant definition: two independent methods are used
 - **★ BDT approach:** Boosted Decision Tree trained on MC signal samples
 - ★ MELA approach: Bayes Likelihood Ratio multivariate discriminant from matrix element description of the decay
 - → using full theoretical description of signal final state
 - → includes corrections for detector/selection effects: inefficiencies, ZZ mis-pairing [extracted from fully simulated JHU MC]
- Main systematic uncertainties
 - * reconstruction: electron ES, mis-pairing fraction
 - * signal/background modelling: MC/control regions statistics, MC crosssections
 - ★ mass regions migration

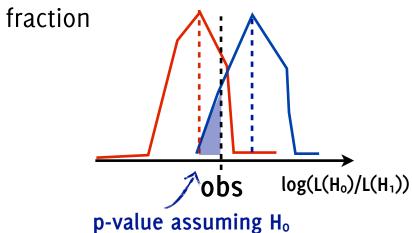

- * Indirect searches
- * Direct searches
- **★ Other ways: using the Higgs**

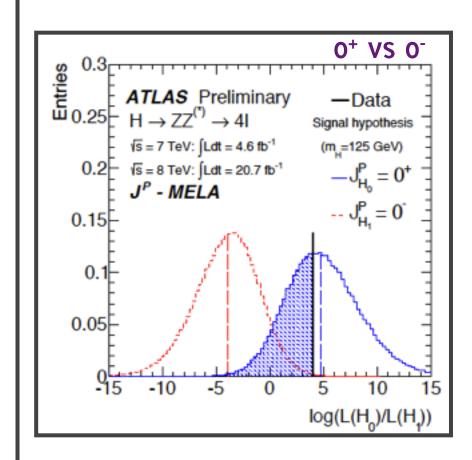

SEPARATIONS IN $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

JP-MELA discriminant:

$$J^{P}\text{-MELA} = \frac{P(H_0)}{P(H_0) + P(H_1)}$$

- Test one hypothesis (H₀) against another one (H₁)
 - ★ assuming that the spin-parity is O⁺
 - * testing against non-SM hypotheses: 0⁻,
 - 1[±], 2_m[±]
 - * spin-2: varying ggF/qq production


- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs

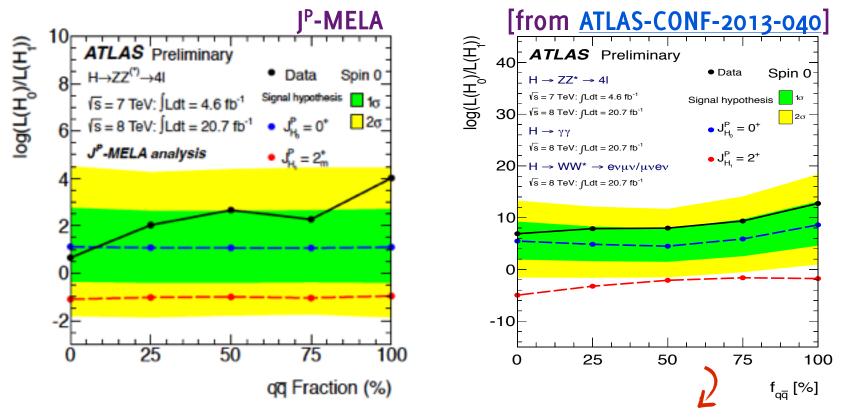

SEPARATIONS IN $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

JP-MELA discriminant:

$$J^{P}\text{-MELA} = \frac{P(H_0)}{P(H_0) + P(H_1)}$$

- ▶ Test one hypothesis (H₀) against another one (H₁)
 - * assuming that the spin-parity is O+
 - * testing against non-SM hypotheses: 0⁻,
 - 1[±], 2_m[±]
 - * spin-2: varying ggF/qq production

- → excluding o⁻, 1⁺, 1⁻ at > 95% CL
- → data prefers the SM Higgs hypothesis



- * Indirect searches
- * Direct searches
- * Other ways: using the Higgs

STUDY OF SPIN-2 ADMIXTURES

- * for spin-2: gluon-gluon fusion, $q\overline{q}$ production mechanisms or an admixture of the two are allowed
- * testing different spin-2 production mechanisms, $f_{q\bar{q}} = 0$, 25, 50, 75, 100%

combining with YY and WW excluding graviton-inspired spin-2+ model at 99.9%

CONCLUSIONS AND PLANS

- ▶ All these results (plus the huge work done on SUSY, exotics, SM precision measurements) indicate that the Standard Model stands his ground
 - ⋆ no indications of new physics
 - * extraordinary result: discovery of new Higgs-like particle!
- There are open issues still
 - ★ dark matter: new matter? new force?
 - * naturalness and fine tuning problems → new physics at the TeV scale
 we just reached the TeV scale, but haven't quite explored it yet
- My plans for the near future
 - ★ pursue searches for new physics in preparation of the 13 TeV data
 - * participate to the ATLAS trigger upgrade: plans to join the Saclay effort on the New Small Wheels in the spring