Speaker
Description
In this talk, we present our results for the azimuthal decorrelation of a vector boson and jet in proton-proton collisions. We show that using a recoil-free jet definition reduces the sensitivity to contamination from soft radiation on the measurement and simplifies our theoretical calculation by eliminating complications associated with non-global logarithms. Specifically, we consider the $p_T^n$ recombination scheme, as well as the $n\to \infty$ limit, known as the winner-take-all scheme. These jet definitions also significantly simplify the calculation for a track-based measurement, which is preferred due to its superior angular resolution. We present a detailed discussion of the factorization in Soft-Collinear Effective Theory as well as resummation in the back-to-back limit up to next-to-next-to-leading logarithms. Whether the potential glauber contributions spoil our factorization formalism will also be commented on. We conclude with a detailed phenomenological study, finding an enhanced matching correction for high jet $p_T$ due to the electroweak collinear enhancement of a boson emission off di-jets. We also compare with the Pythia event generator, showing the robustness of our observable to effects of hadronization and the underlying event.